Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-25T06:34:23.216Z Has data issue: false hasContentIssue false

Children Like Dense Neighborhoods: Orthographic Neighborhood Density Effects in Novel Readers

Published online by Cambridge University Press:  10 April 2014

Jon Andoni Duñabeitia*
Affiliation:
Universidad de La Laguna
Eduardo Vidal-Abarca
Affiliation:
Universitat de València
*
Address correspondence concerning this article to Jon Andoni Duñabeitia, Departamento de Psicología Cognitiva, Universidad de La Laguna, 38205 - Tenerife(Spain). Phone: +34678635223. Fax: +34922317461. E-mail: [email protected]

Abstract

Previous evidence with English beginning readers suggests that some orthographic effects, such as the orthographic neighborhood density effects, could be stronger for children than for adults. Particularly, children respond more accurately to words with many orthographic neighbors than to words with few neighbors. The magnitude of the effects for children is much higher than for adults, and some researchers have proposed that these effects could be progressively modulated according to reading expertise. The present paper explores in depth how children from 1st to 6th grade perform a lexical decision with words that are from dense or sparse orthographic neighborhoods, attending not only to accuracy measures, but also to response latencies, through a computer-controlled task. Our results reveal that children (like adults) show clear neighborhood density effects, and that these effects do not seem to depend on reading expertise. Contrarily to previous claims, the present work shows that orthographic neighborhood effects are not progressively modulated by reading skill. Further, these data strongly support the idea of a general language-independent preference for using the lexical route instead of grapheme-to-phoneme conversions, even in beginning readers. The implications of these results for developmental models in reading and for models in visual word recognition and orthographic encoding are discussed.

La investigación previa con lectores principiantes de ingles sugiere que algunos efectos ortográficos, tales como los efectos de la densidad (vecindad ortográfica), podrían ser más fuertes para los niños que para los adultos. En especial, los niños responden con mayor precisión a las palabras con muchos vecinos ortográficos que a las palabras con pocos vecinos. La magnitud de los efectos para los niños es mucho más alta que para los adultos, y algunos investigadores han propuesto que estos efectos podrían modularse progresivamente en función de la competencia lectora. Este estudio explora en profundidad cómo los niños de 1 a 6 curso Ilevan a cabo una decisión léxica con las palabras procedentes de vecindades ortográficas densas o escasas, atendiendo no sólo a las medidas de precisión sino también a las latencias de respuesta, mediante una tarea controlada por ordenador. Nuestros resultados revelan que los niños (como los adultos) muestran claros efectos de densidad (vecindad ortográfica), y que dichos efectos no parecen depender de la competencia lectora. Al contrario de observaciones previas, el trabajo actual muestra que los efectos de vecindad ortográfica no se modulan progresivamente según la competencia lectora. Además, estos datos claramente apoyan la idea de la preferencia por la ruta léxica, que no depende del lenguaje, en vez de las conversiones grafema-a-fonema, incluso en lectores principiantes. Se comentan las implicaciones de estos resultados para los modelos evolutivos de la lectura y para los modelos de reconocimiento visual de las palabras y la codificación ortográfica.

Type
Articles
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acha, J., & Perea, M. (in press). The effects of length and transposed-letter similarity in lexical decision: Evidence with beginning, intermediate, and adult readers. British Journal of Psychology.Google Scholar
Andrews, S. (1989). Frequency and neighborhood effects on lexical access: Activation or search? Journal of Experimental Psychology: Learning, Memory and Cognition, 15, 802814.Google Scholar
Andrews, S. (1992). Frequency and neighborhood effects on lexical access: Lexical similarity or orthographic redundancy? Journal of Experimental Psychology: Learning, Memory and Cognition, 18, 234254.Google Scholar
Andrews, S. (1996). Lexical retrieval and selection processes: Effects of transposed-letter confusability. Journal of Memory & Language, 35, 775800.CrossRefGoogle Scholar
Andrews, S. (1997). The role of orthographic similarity in lexical retrieval: Resolving neighborhood conflicts. Psychonomic Bulletin and Review, 4, 439461.CrossRefGoogle Scholar
Balota, D.A., & Chumbley, J.I. (1984). Are lexical decisions a good measure of lexical access? The role of word frequency in the neglected decision stage. Journal of Experimental Psychology: Human Perception and Performanc, 10, 340357.Google ScholarPubMed
Carreiras, M., Perea, M., & Grainger, J., (1997). Effects of orthographic neighborhood in visual word recognition: cross-task comparisons. Journal of Experimental Psychology: Learning, Memory and Cognition, 23, 857871.Google ScholarPubMed
Castles, A., Davis, C., & Forster, K.I. (2003). Word recognition development in children: Insights from masked-priming. In Kinoshita, S. & Lupker, S. (Eds.), Masked priming: State of the art (pp. 345360). Hove, UK: Psychology Press.Google Scholar
Chambers, S.M. (1979). Letter and order information in lexical access. Journal of Verbal Learning and Verbal Behavior, 18, 225241.CrossRefGoogle Scholar
Clark, H.H. (1973). The Language-as-fixed-effect fallacy: A critique of language statistics in psychological research. Journal of Verbal Learning and Verbal Behavior, 12, 335359.CrossRefGoogle Scholar
Coltheart, M. (1980). Deep dyslexia: A right hemisphere hypothesis. In Coltheart, M.Patterson, K., & Marshall, J.C. (Eds.), Deep Dyslexia (pp. 361406). London: Routledge & Kegan Paul.Google Scholar
Coltheart, M. (2000). Deep dyslexia is right-hemisphere reading. Brain and Language, 71, 299309.CrossRefGoogle ScholarPubMed
Coltheart, M., Davelaar, E., Jonasson, J.T., & Besner, D. (1977). Access to the internal lexicon. In Dornic, S., (Ed.), Attention and performance VI. Hillsdale, NJ: Erlbaum.Google Scholar
Coltheart, M., Rastle, K., Perry, C., Ziegler, J., & Langdon, R. (2001). DRC: A dual-route cascaded model of visual word recognition and reading aloud. Psychological Review, 108, 204256.CrossRefGoogle ScholarPubMed
Davis, C.J. (1999). The self-organising lexical acquisition and recognition (SOLAR) model of visual word recognition. Unpublished doctoral dissertation, University of New South Wales.Google Scholar
Davis, C.J., & Perea, M. (2005). BuscaPalabras: A program for deriving orthographic and phonological neighborhood statistics and other psycholinguistic indices in Spanish. Behavior Research Methods, 37, 665671.CrossRefGoogle ScholarPubMed
Davis, C.J., & Perea, M. (2007). Re(de)fining the orthographic neighbourhood: Evidence for the similarity of addition and deletion neighbours in Spanish. Manuscript submitted for publication.Google Scholar
Davis, C.J., & Taft, M. (2005). More words in the neighborhood: Interference in lexical decision due to deletion neighbors. Psychonomic Bulletin & Review, 12, 904910.CrossRefGoogle ScholarPubMed
Duñabeitia, J.A., Perea, M., & Carreiras, M. (2007). Do transposed-letter similarity effects occur at a morpheme level? Evidence for morpho-orthographic decomposition. Cognition, 195, 691703.CrossRefGoogle Scholar
Duñabeitia, J.A., Carreiras, M., & Perea, M. (in press). Are coffee and toffee served in a cup? Ortho-phonologically mediated associative priming. Quarterly Journal of Experimental Psychology. DOI: 10.1080/17470210701774283.Google Scholar
Duñabeitia, J.A., Vidal-Abarca, E., & Izquierdo, C. (2008). Evaluación del reconocimiento visual de palabras mediante tarea de decisión léxica. Manuscript in preparation.Google Scholar
Forster, K.I. (1976). Accessing the mental lexicon. In Wales, R.J. & Walker, E. (Eds.), New approaches to language mechanisms (pp. 257287). Amsterdam: North-Holland.Google Scholar
Forster, K.I., & Forster, J.C. (2003). DMDX: A Windows display program with millisecond accuracy. Behavior Research Methods, Instruments, & Computers, 35, 116124.CrossRefGoogle ScholarPubMed
Forster, K.I., & Hector, J. (2002). Cascaded versus noncascaded models of lexical and semantic processing: The turple effect. Memory & Cognition, 30, 11061117.CrossRefGoogle ScholarPubMed
Forster, K.I., & Shen, D. (1996). No enemies in the neighborhood: Absence of inhibitory effects in lexical decision and categorization. Journal of Experimental Psychology: Learning, Memory, & Cognition, 22, 696713.Google ScholarPubMed
Frith, U. (1980). Unexpected spelling problems. In Frith, U. (Ed.), Cognitive processes in spelling. London: Academic Press.Google Scholar
Frith, U. (1985). Beneath the surface of developmental dyslexia. In Patterson, K.G.Marshall, J. C., & Coltheart, M. (Eds.), Surface dyslexia: Studies of phonological reading (pp. 301330). London: Routledge and Kegan Paul.Google Scholar
Frost, R., Kugler, T., Deutsch, A., & Forster, K.I. (2005). Orthographic structure versus morphological structure: Principles of lexical organization in a given language. Journal of Experimental Psychology: Learning, Memory and Cognition, 31, 1293–326.Google Scholar
Gómez, P., Ratcliff, R., & Perea, M. (2007). A model of letter position coding: The overlap model. Manuscript submitted for publication.Google Scholar
Grainger, J., Granier, J.P., Farioli, F., Van Assche, E., & van Heuven, W. (2006). Letter position information and printed word perception: The relative-position priming constraint. Journal of Experimental Psychology: Human Perception and Performance, 32, 865884.Google ScholarPubMed
Grainger, J., & Jacobs, A.M. (1996). Orthographic processing in visual word recognition: A multiple read-out model. Psychological Review, 103, 518565.CrossRefGoogle ScholarPubMed
Grainger, J., & Seguí, J. (1990). Neighborhood frequency effects in visual word recognition: A comparison of lexical decision and masked identification latencies. Perception and Psychophysics, 47, 191198.CrossRefGoogle ScholarPubMed
Harm, M.W., McCandliss, B.D., & Seidenberg, M.S., (2003). Modelling the successes and failures of interventions for disabled readers. Scientific Studies of Reading, 7, 155182.CrossRefGoogle Scholar
Holcomb, P.J., Grainger, J., & O'Rourke, T. (2002). An electrophysiological study of the effects of orthographic neighborhood size on printed word perception. Journal of Cognitive Neuroscience, 14, 938950.CrossRefGoogle ScholarPubMed
Lavidor, M., Johnston, R.S., & Snowling, M.J. (2006). When phonology fails: Orthographic neighbourhood effects in Dyslexia. Brain & Language, 96, 318329.CrossRefGoogle ScholarPubMed
Lavidor, M., & Walsh, V. (2003). A magnetic stimulation examination of orthographic neighbourhood effects in visual word recognition. Journal of Cognitive Neuroscience, 15, 354363.CrossRefGoogle Scholar
Laxon, V., Coltheart, V., & Keating, C. (1988). Children find friendly words friendly too: Words with many orthographic neighbours are easier to read and spell. British Journal of Educational Psychology, 58, 103119.CrossRefGoogle Scholar
Laxon, V., Gallagher, A., & Masterson, J. (2002). Word length and orthographic neighbourhood size effects in children's reading. British Journal of Psychology, 93, 269287.CrossRefGoogle Scholar
Laxon, V., Masterson, J., & Moran, R. (1994). Are children's representations of words distributed? Effects of orthographic neighbourhood size, consistency, and regularity of naming. Language and Cognitive Processes, 9, 127.CrossRefGoogle Scholar
McClelland, J. L. (1989). Parallel distributed processing: Implications for cognition and development. In Morris, R. (Ed.), Parallel distributed processing: Implications for psychology and neurobiology. (pp. 845). New York: Oxford University Press.Google Scholar
McClelland, J.L., & Rumelhart, D.E. (1981). An interactive activation model of context effects in letter perception: Part 1. An account of basic findings, Psychological Review, 88, 375407.Google Scholar
Paap, K.R., & Johansen, L. S. (1994). The case of the vanishing frequency effect: A retest of the verification model. Journal of Experimental Psychology: Human Perception & Performance, 20, 11291157.Google Scholar
Paap, K.R., Newsome, S.L., McDonald, J.E., & Schvaneveldt, R.W. (1982). An activation-verification model for letter and word recognition: The word-superiority effect. Psychological Review, 89, 573594.CrossRefGoogle ScholarPubMed
Page, M. (2000). Connectionist modelling in psychology: A localist manifesto. Behavioural and Brain Sciences, 23, 443–67.CrossRefGoogle ScholarPubMed
Perea, M. (1998). Orthographic neighbours are not all equal: Evidence using an identification technique. Language and Cognitive Processes, 13, 7790.CrossRefGoogle Scholar
Perea, M., & Algarabel, S. (1999). Puntuaciones típicas y potencia estadística con diferentes procedimientos de análisis de los tiempos de reacción: un estudio de simulación. Psicológica, 20, 211226.Google Scholar
Perea, M., & Estévez, A. (2008). Transposed-letter similarity effects in naming pseudowords: Evidence from children and adults. European Journal of Cognitive Psychology, 20, 3346.CrossRefGoogle Scholar
Perea, M., & Fraga, I. (2006). Transposed-letter and laterality effects in lexical decision. Brain and Language, 97, 102109.CrossRefGoogle ScholarPubMed
Perea, M., & Lupker, S.J. (2003). Transposed-letter confusability effects in masked form priming. In Kinoshita, S. & Lupker, S.J. (Eds.), Masked priming: State of the art (pp. 97120). Hove, UK: Psychology Press.Google Scholar
Pollatsek, A., Hyönä, J., & Bertram, R. (2000). The role of morphological constituents in reading Finnish compound words. Journal of Experimental Psychology: Human Perception and Performance, 26, 820833.Google ScholarPubMed
Pollatsek, A., Perea, M., & Binder, K. (1999). The effects of neighborhood size in reading and lexical decision. Journal of Experimental Psychology: Human Perception and Performance, 25, 11421158.Google ScholarPubMed
Ratcliff, R. (1993). Methods for dealing with reaction time outliers. Psychological Bulletin, 114, 510532.CrossRefGoogle ScholarPubMed
Rubinstein, O., Henik, A., & Dronkers, N.F. (2001, September 4-7). Is the right hemisphere capable of reading and understanding a word? Presented in ESCOP, Edinburgh, UK.Google Scholar
Rumelhart, D.E., McClelland, J.L., and the PDP research group. (1986). Parallel distributed processing: Explorations in the microstructure of cognition. Volume I. Cambridge, MA: MIT Press.CrossRefGoogle Scholar
Sears, C.R., Hino, Y., & Lupker, S.J. (1995). Neighborhood frequency and neighborhood size effects in visual word recognition. Journal of Experimental Psychology: Human Perception & Performance, 21, 876900.Google Scholar
Sebastián-Gallés, N., Cuetos, F. / Carreiras, M. / Martí, M. A. (2000) Lexesp. Léxico informatizado del español. Barcelona: Publicacions i Edicions UBGoogle Scholar
Sebastián-Gallés, N., & Parreño, A. (1995). The development of analogical reading in Spanish. Reading and Writing, 7, 2338.CrossRefGoogle Scholar
Shelton, J.R., & Martin, R.C. (1992). How semantic is automatic semantic priming? Journal of Experimental Psychology: Learning, Memory, and Cognition, 18, 11911210.Google ScholarPubMed
Shillcock, R., Ellison, T. M., & Monaghan, P. (2000). Eye-fixation behavior, lexical storage and visual word recognition in a split processing model. Psychological Review, 107, 824851.CrossRefGoogle Scholar
Siakaluk, P.D., Sears, C.R., & Lupker, S.J. (2002). Orthographic neighborhood effects in lexical decision: The effects of nonword orthographic neighborhood size. Journal of Experimental Psychology: Human Perception and Performance, 28, 661681.Google ScholarPubMed
Snodgrass, J.G., & Mintzer, M. (1993). Neighborhood effects in visual word recognition: Facilitatory or inhibitory? Memory & Cognition, 21, 247266.CrossRefGoogle ScholarPubMed
Snowling, M.J. (2000). Language and literacy skills: who is at risk and why? In Bishop, D.V.M. & Leonard, L.B., (Eds.). Speech and language impairments in children: Causes, characteristics, intervention and outcome (pp. 245260). Hove, UK: Psychology Press.Google Scholar
Spieler, D.H., & Balota, D.A. (2000). Factors influencing word naming in younger and older adults. Psychology and Aging, 15, 225231.CrossRefGoogle ScholarPubMed
Whitney, C. (2001). How the brain encodes the order of letters in a printed word: The SERIOL model and selective literature review. Psychonomic Bulletin and Review, 8, 221243.CrossRefGoogle Scholar
Ziegler, J.C., & Goswami, U. (2006). Becoming literate in different languages: similar problems, different solutions. Developmental Science, 9, 429453.CrossRefGoogle ScholarPubMed