Hostname: page-component-599cfd5f84-cdgjw Total loading time: 0 Render date: 2025-01-07T07:38:03.660Z Has data issue: false hasContentIssue false

Changing the General Factor of Personality and the c-fos Gene Expression with Methylphenidate and Self-Regulation Therapy

Published online by Cambridge University Press:  10 January 2013

Joan C. Micó
Affiliation:
Universitat Politècnica de València (Spain)
Salvador Amigó
Affiliation:
Universitat de València (Spain)
Antonio Caselles*
Affiliation:
Universitat de València (Spain)
*
Correspondence concerning this article should be addressed to Antonio Caselles. Departament de Matemàtica Aplicada, Universitat de València. Dr. Moliner, 50, 46100 Burjassot - Valencia (Spain). Phone: +34-963543228. Fax: 34-963543922. E-mail: [email protected]

Abstract

A deepening in the biological nature of the general factor of personality (GFP) is suggested: the activation level of the stress system is here represented by the gene expression of c-fos. The results of a single case experimental design are reported. A model of four coupled differential equations that explains the human personality dynamics as a consequence of a single stimulant drug intake has been fitted to psychological and biological experimental data. The stimulant-drug conditioning and its adaptation to the considered mathematical model is also studied for both kinds of measures. The dynamics of the c-fos expression presents a similar pattern to the dynamics of the psychological measures of personality assessed by the GFP-FAS (Five-Adjective Scale of the General Factor of Personality) as a consequence of a single dose of stimulant drug (methylphenidate). The model predicts similar dynamic patterns for both psychological and biological measures. This study proves that describing mathematically the dynamics of the effects of a stimulant drug as well as the effects of a conditioning method on psychological or subjective variables and on gene expression is possible. It verifies the existence of biological mechanisms underlying the dynamics of the General Factor of Personality (GFP).

Este artículo estudia la naturaleza dinámica del Factor General de Personalidad (FGP) en respuesta a una dosis única de metilfenidato a partir de un diseño experimental de caso único con replicación. Para medir el FGP, se emplean tanto medidas psicológicas (Escala de Cinco Adjetivos del Factor General de Personalidad; ECA-FGP), como un marcador biológico (propuesto como substrato biológico del FGP) que es la concentración del gen c-fos en los linfocitos de la sangre. También se estudia el condicionamiento de los efectos subjetivo y biológico del metilfenidato con una técnica de sugestión y condicionamiento, denominada terapia de auto-regulación. Por último, se propone un modelo matemático de cuatro ecuaciones diferenciales acopladas que explican la dinámica del FGP como consecuencia de una ingestión de droga estimulante y del condicionamiento de la droga, ajustadas a los datos experimentales psicológicos y biológicos. Los resultados muestran un patrón dinámico similar para ambas medidas psicológicas y biológicas del FGP en respuesta tanto a una dosis de metilfenidato como al condicionamiento con terapia de auto-regulación. Así, se evidencia que es posible la formulación matemática de la dinámica del FGP y sus correlatos biológicos, como el gen regulador c-fos, y su condicionamiento mediante la terapia de auto-regulación.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akins, P. T., Liu, P. K., & Hsu, C. Y. (1996). Immediate early gene expression in response to cerebral ischemia: Friend or foe? Stroke, 27, 16821687. http://dx.doi.org/10.1161/01.STR.27.9.1682CrossRefGoogle ScholarPubMed
Amigó, S. (1992). Manual de terapia de autorregulación [Therapy handbook about self-regulation]. Valencia, Spain: Promolibro.Google Scholar
Amigó, S. (1994). Self regulation therapy and the voluntary reproduction of stimulant effects of ephedrine: Possible therapeutic applications. Contemporary Hypnosis, 11, 108120.Google Scholar
Amigó, S. (1997). Uso potencial de metilfenidato y la sugestión en el tratamiento psicológico y en el aumento de las potencialidades humanas: Un estudio de caso [Potential use of methylphenidate and suggestion in psychological therapy and in the improvement of human capabilities: A case study]. Análisis y Modificación de Conducta, 23, 863890.Google Scholar
Amigó, S. (2005). La teoría del rasgo único de personalidad. Hacia una teoría unificada del cerebro y la conducta [The unique personality trait theory. Towards a unified theory of brain and behavior]. Valencia, Spain: Editorial de la Universidad Politécnica de Valencia.Google Scholar
Amigó, S., Caselles, A., & Micó, J. C. (2008a). A dynamic extraversion model. The brain's response to a single dose of a stimulant drug. British Journal of Mathematical and Statistical Psychology, 61, 211231. http://dx.doi.org/10.1348/000711007X185514CrossRefGoogle ScholarPubMed
Amigó, S., Caselles, A., & Micó, J. C. (2008b). Personality and early effects of caffeine: A dynamical systemic model. Revista Internacional de Sistemas, 15, 3850.Google Scholar
Amigó, S., Caselles, A., & Micó, J. C. (2010). The General Factor of Personality Questionnaire (GFPQ): Only one factor to understand the personality? The Spanish Journal of Psychology, 13, 517.CrossRefGoogle ScholarPubMed
Amigó, S., Caselles, A., Micó, J. C., & García, J. M. (2009). Dynamics of the unique trait of personality: blood's glutamate in response to methylphenidate and conditioning. Revista Internacional de Sistemas, 16, 3540.Google Scholar
Amigó, S., Micó, J. C., & Caselles, A. (2008). Adjective scale of the unique personality trait: measure of personality as an overall and complete system. Proceedings of the 7th Congress of the European Systems Union, Lisboa, Portugal.Google Scholar
Amigó, S., Micó, J. C., & Caselles, A. (2009). Five adjectives to explain the whole personality: a brief scale of personality. Revista Internacional de Sistemas, 16, 4143.Google Scholar
Barlow, D. H., & Hersen, M. (1984). Single case experimental designs. Strategies for studying behavior change. New York, NY: Pergamon Press.Google Scholar
Berke, J. D., Paletzki, R. F., Aronson, G. J., Hyman, S. E., & Gerfen, C. R. (1998). A complex program of striatal gene expression induced by dopaminergic stimulation. The Journal of Neuroscience, 18, 53015310.CrossRefGoogle ScholarPubMed
Bertaina-Anglade, V., Tramu, G., & Destrade, C. (2000). Differential learning-stage dependent patterns of c-Fos protein expression in brain regions during the acquisition and memory consolidation of an operant task in mice. European Journal of Neuroscience, 12, 38033812. http://dx.doi.org/10.1046/j.1460-9568.2000.00258.xCrossRefGoogle ScholarPubMed
Bogaert, A. F., & Rusthon, J. P. (1989). Sexuality, delinquency and r/K reproductive strategies: Data from Canadian university sample. Personality and Individual Differences, 10, 10711077. http://dx.doi.org/10.1016/0191-8869(89)90259-6CrossRefGoogle Scholar
Brandon, C. L., & Steiner, H. (2003). Repeated methylphenidate treatment in adolescent rats alters gene regulation in the striatum. European Journal of Neuroscience, 18, 15841592. http://dx.doi.org/10.1046/j.1460-9568.2003.02892.xCrossRefGoogle ScholarPubMed
Brown, E. E., Robertson, G. S., & Fibiger, H. C. (1992): Evidence for conditional neuronal activation following exposure to a cocaine-paired environment: Role of forebrain limbic structures. The Journal of Neuroscience, 12, 41124121.CrossRefGoogle ScholarPubMed
Butcher, S. P., Liptrot, J., & Arbuthnott, G. W. (1991). Characterization of methylphenidate and nomifensine induced dopamine release in rat striatum using in vivo brain microdialysis. Neuroscience Letters, 122, 245248. http://dx.doi.org/10.1016/0304-3940(91)90869-UCrossRefGoogle ScholarPubMed
Caselles, A., Micó, J. C., & Amigó, S. (2010). Cocaine addiction and personality: A mathematical model. British Journal of Mathematical and Statistical Psychology, 63, 449480. http://dx.doi.org/10.1348/000711009X470768CrossRefGoogle ScholarPubMed
Caselles, A., Micó, C., & Amigó, S. (2011). Dynamics of the General Factor of Personality in response to single dose of caffeine. The Spanish Journal of Psychology, 14, 675692. http://dx.doi.org/10.5209/rev_SJOP.2011.v14.n2.16CrossRefGoogle ScholarPubMed
Chase, T. D., Brown, R. E., Carrey, N., & Wilkinson, M. (2003). Daily methylphenidate administration attenuates c-fos expression in the striatum of prepuberal rats. Neuroreport, 14, 769772. http://dx.doi.org/10.1097/00001756-200304150-00022CrossRefGoogle Scholar
Erdle, S., Irwing, P., Rushton, J. P., & Park, J. (2010). The general factor of personality and its relation to self-esteem in 628,640 Internet respondents. Personality and Individual Differences, 48, 343346. http://dx.doi.org/10.1016/j.paid.2009.09.004CrossRefGoogle Scholar
Figueredo, A. J., & Rushton, J. P. (2009). Evidence for shared genetic dominant between the general factor of personality, mental and physical health, and life history traits. Twin Research and Human Genetics, 12, 555563. http://dx.doi.org/10.1375/twin.12.6.555CrossRefGoogle ScholarPubMed
Figueredo, A. J., Vásquez, G., Brumbach, B. H., Schneider, S. M. R., Sefcek, J. A., Tal, I. R., … Jacobs, W. J. (2006). Consilience and Life History Theory: From genes to brain to reproductive strategy. Developmental Review, 2, 243275. http://dx.doi.org/10.1016/j.dr.2006.02.002CrossRefGoogle Scholar
Gatley, S. J., Pan, D., Chen, R., Chaturvedi, G., & Ding, Y. S. (1996). Affinities of methylphenidate derivatives for dopamine, norepinephrine and serotonin transporters. Life Sciences, 58, 231239. http://dx.doi.org/10.1016/0024-3205(96)00052-5CrossRefGoogle ScholarPubMed
Gerasimov, M. R., Franceschi, M., Volkow, N. D., Gifford, A., Gatley, S. J., Marsteller, D., … Dewey, S. L. (2000). Comparison between intraperitoneal and oral methylphenidate administration: a microdialysis and locomotor activity study. The Journal of Pharmacology and Experimental Therapeutics, 295, 5157.Google ScholarPubMed
Grossberg, S. (2000). The imbalanced brain: from normal to schizophrenia. Biological Psychiatry, 48, 8198. http://dx.doi.org/10.1016/S0006-3223(00)00903-3CrossRefGoogle ScholarPubMed
Guzowski, J. F., Setlow, B., Wagner, E. K., & McGaugh, J. L. (2001). Experience-dependent gene expression in the rat hippocampus after spatial learning: a comparison of the immediate-early genes Arc, c-fos, and zif268. The Journal of Neuroscience, 21, 50896098.CrossRefGoogle ScholarPubMed
Harlan, R. E., & Garcia, M. M. (1998). Drugs of abuse and immediate-early genes in the forebrain. Molecular Neurobiology, 16, 221267. http://dx.doi.org/10.1007/BF02741385CrossRefGoogle ScholarPubMed
Harris, J. A. (1998). Using c-fos as neural marker of pain. Brain Research Bulletin, 45, 18. http://dx.doi.org/10.1016/S0361-9230(97)00277-3CrossRefGoogle ScholarPubMed
Hess, U. S., Lynch, G., & Gall, C. M. (1995). Regional patterns of c-fos mRNA expression in rat hippocampus following exploration of a novel environment versus performance of a well-learned discrimination. Journal of Neuroscience, 15, 77967809.CrossRefGoogle ScholarPubMed
Hurd, Y. L., & Ungerstedt, U. (1989). In vivo neurochemical profile of dopamine uptake inhibitors and releasers in rat caudateputamen. European Journal of Pharmacology, 166, 251260. http://dx.doi.org/10.1016/0014-2999(89)90066-6CrossRefGoogle ScholarPubMed
Kogure, C., & Kato, H. (1993). Altered gene expression in cerebral ischemia. Stroke, 24, 21212127. http://dx.doi.org/10.1161/01.STR.24.12.2121CrossRefGoogle ScholarPubMed
Kuczenski, R., & Segal, D. S. (1977). Effects of methylphenidate on extracellular dopamine, serotonin, and norepinephrine: comparison with amphetamine. Journal of Neurochemistry, 68, 20322037. http://dx.doi.org/10.1046/j.1471-4159.1997.68052032.xCrossRefGoogle Scholar
Levite, M. (2006). Nerve-driven immunity: The direct effects of neurotransmitters on T-cell function. Annals of the New York Academy of Sciences, 917, 307321. http://dx.doi.org/10.1111/j.1749-6632.2000.tb05397.xCrossRefGoogle Scholar
Lin, T. N., Te, J., Huang, H. C., Chi, S. I., & Hsu, C. Y. (1997). Prolongation and enhancement of post ischemic c-fos expression after fasting. Stroke, 28, 412418. http://dx.doi.org/10.1161/01.STR.28.2.412CrossRefGoogle Scholar
Lynch, J. J., Stein, E. A., & Fertziger, A. P. (1976). An analysis of 70 years of morphine classical conditioning: implications of clinical treatment of narcotic addiction. Journal of Nervous and Mental Disease, 163, 4758. http://dx.doi.org/10.1097/00005053-197607000-00007CrossRefGoogle Scholar
Micó, J. C., Amigó, S., & Caselles, A. (2008). Respuesta dinámica del cerebro a una dosis única de droga estimulante: modelo de retraso continuo. [Dynamic response of the brain to a single dose of a stimulant drug: a continuous delay model]. Revista Internacional de Sistemas, 15, 5155.Google Scholar
Montag-Sallaz, M., Welzl, H., Jul, D., Montag, D., & Schachner, M. (1999). Novelty-induced increased expression of immediateearly genes c-fos and arg 3.1 in the mouse brain. Journal of Neurobiology, 38, 234246. http://dx.doi.org/10.1002/(SICI)1097-4695(19990205)38:2<234::AID-NEU6>3.0.CO;2-G3.0.CO;2-G>CrossRefGoogle ScholarPubMed
Morgan, J. I., & Curran, T. (1991). Stimulus-transcription coupling in the nervous system: involvement of the inducible protooncogenes fos and jun. Annual Review of Neuroscience, 14, 421451. http://dx.doi.org/10.1146/annurev.ne.14.030191.002225CrossRefGoogle ScholarPubMed
Musek, J. (2007). A general factor of personality: Evidence for the Big One in the five-factor model. Journal of Research in Personality, 41, 12131233. http://dx.doi.org/10.1016/j.jrp.2007.02.003CrossRefGoogle Scholar
Neisewander, J. L., Baker, D. A., Fuchs, R. A., Tran-Nguyen, L. T. L., Palmer, A. J., & Marshall, J. F. (2000). Fos protein expression and cocaine-seeking behavior in rats after exposure to a cocaine self-administration environment. Journal of Neuroscience, 20, 798805.CrossRefGoogle ScholarPubMed
O'Brian, C. P., Childress, A. R., McLellan, A. T., & Ehrman, R. (1992). Classical conditioning in drug-dependent humans. Annals of the New York Academy of Sciences, 654, 400415. http://dx.doi.org/10.1111/j.1749-6632.1992.tb25984.xCrossRefGoogle Scholar
Ogard, C. G., Bratholm, P., Kristensen, L. O., Almdal, T., & Christensen, N. J. (2000). Lymphocyte glucocorticoid receptor mRNA correlates negatively to serum leptin in normal weight subjects. International Journal of Obesity, 24, 915919. http://dx.doi.org/10.1038/sj.ijo.0801252CrossRefGoogle ScholarPubMed
Ostadali, M. R., Ahangari, G., Eslami, M. B., Ravazi, A., Zarrindast, M. R., Ahmadkhaniha, H. R., & Boulhari, J. (2004). The detection of dopamine gene receptors (DRD1-DRD5) expression on human peripheral blood lymphocytes by Real Time PCR. Iranian Journal of Allergy, Asthma and Immunology, 3, 169174.Google ScholarPubMed
Pavlov, (1927). Conditioned Reflexes. London, England: Oxford University Press.Google Scholar
Penner, M. R., McFadyen, M. P., Pinaud, R., Carrey, N., Robertson, H. A., & Brown, R. E. (2002). Age-related distribution of c-fos expression in the striatum of CD-1 mice after acute methylphenidate administration. Developmental Brain Research, 135, 7177. http://dx.doi.org/10.1016/S0165-3806(02)00308-5CrossRefGoogle ScholarPubMed
Platt, J. E., He, X., Tang, D., Slater, J., & Goldstein, M. (1995). C-fos expression in vivo human lymphocytes in response to stress. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 19, 6574. http://dx.doi.org/10.1016/0278-5846(94)00105-QCrossRefGoogle ScholarPubMed
Pompeiano, M., Cirelli, C., Arrighi, P., & Tononi, G. (1997). c-Fos expression during wakefulness and sleep. Clinical Neurophysiology 25, 329341. http://dx.doi.org/10.1016/0987-7053(96)84906-9CrossRefGoogle Scholar
Rushton, J. P., Bons, T. A., Ando, J., Hur, Y-M., Irwing, P., Vernon, P. A., … Barbarenilli, C. (2009). A general factor of personality from multitrait-multimethod data and cross-national twins. Twin Research and Human Genetics, 12, 356365. http://dx.doi.org/10.1375/twin.12.4.356CrossRefGoogle ScholarPubMed
Rushton, J. P., Bons, T. A., & Hur, Y-M. (2008). The genetics and evolution of the general factor of personality. Journal of Research in Personality, 42, 11731185. http://dx.doi.org/10.1016/j.jrp.2008.03.002CrossRefGoogle Scholar
Rushton, J. P., & Irwing, P. (2008). A General Factor of Personality (GFP) from two meta-analyses of the Big Five: Digman (1997) and Mount, Barrik, Scullen, and Rounds (2005). Personality and Individual Differences, 45, 679683. http://dx.doi.org/10.1016/j.paid.2008.07.015CrossRefGoogle Scholar
Rushton, J. P., & Irwing, P. (2009a). A general factor of personality in the Comrey Personality Scales, the Minnesota Multiphasic Personality Inventory-2, and the Multicultural Personality Questionnaire. Personality and Individual Differences, 46, 437442. http://dx.doi.org/10.1016/j.paid.2008.11.015CrossRefGoogle Scholar
Rushton, J. P., & Irwing, P. (2009b). A general factor of personality in 16 sets of the Big Five, the Guilford-Zimmerman Temperament Survey, the California Psychological Inventory, and the Temperament and Character Inventory. Personality and Individual Differences, 47, 558564. http://dx.doi.org/10.1016/j.paid.2009.05.009CrossRefGoogle Scholar
Rushton, J. P., & Irwing, P. (2009c). A general factor of personality (GFP) from the Multidimensional Personality Questionnaire. Personality and Individual Differences, 47, 571576. http://dx.doi.org/10.1016/j.paid.2009.05.011CrossRefGoogle Scholar
Rushton, J. P., & Irwing, P. (2009d). A General Factor of Personality in the Millon Clinical Multiaxial Inventory-III, the Dimensional Assessment of Personality Pathology, and the Personality Assessment Inventory. Journal of Research in Personality, 43, 10911095. http://dx.doi.org/10.1016/j.jrp.2009.06.002CrossRefGoogle Scholar
Schermer, J. A., & Vernon, P. A. (2010). The correlation between general intelligence (g), a general factor of personality (GFP), and social desirability. Personality and Individual Differences, 48, 187189. http://dx.doi.org/10.1016/j.paid.2009.10.003CrossRefGoogle Scholar
Schroeder, B. E., Holahan, M. R., Landy, C. F., & Kelley, A. E. (2000). Morphine-associated environmental cues elicit conditioned gene expression. Synapse, 37, 146158. http://dx.doi.org/10.1002/1098-2396(200008)37:2<146::AID-SYN8>3.3.CO;2-R3.0.CO;2-#>CrossRefGoogle ScholarPubMed
Schweri, M. M., Skolnick, P., Rafferty, M. F., Rice, K. C., Janowsky, A. J., & Paul, S. M. (1985). [3H]Threo-(±)-methylphenidate binding to 3,4-dihydroxyphnylethylamine uptake sites in corpus striatum: Correlation with the stimulant properties of ritalinic acid esters. Journal of Neurochemistry, 45, 10621070. http://dx.doi.org/10.1111/j.1471-4159.1985.tb05524.xCrossRefGoogle ScholarPubMed
Solomon, R. L., & Corbit, J. D., (1974). An opponent-process theory of motivation: I. Temporal dynamics of affect. Psychological Review, 81, 119145. http://dx.doi.org/10.1037/h0036128CrossRefGoogle ScholarPubMed
Stewart, J., de Wit, H., & Eikelboom, R. (1984). Role of unconditioned and conditioned drug effects in the self-administration of opiates and stimulants. Psychological Review, 91, 251268. http://dx.doi.org/10.1037/0033-295X.91.2.251CrossRefGoogle ScholarPubMed
Sumner, B. E. H., Cruise, L. A., Slattery, D. A., Hill, D. R., Shahid, M., & Henry, B. (2004). Testing the validity of c-fos expression profiling to aid the therapeutic classification of psychoactive drugs. Psychopharmacology, 171, 306321. http://dx.doi.org/10.1007/s00213-003-1579-7Google ScholarPubMed
Torres, G., & Horowitz, J. M. (1999). Drugs of abuse and brain gene expression. Psychosomatic Medicine, 61, 630650.CrossRefGoogle ScholarPubMed
Veselka, L., Schermer, J. A., Petrides, K. V., Cherkas, L. F., Spence, T. D., & Vernon, P. A. (2009). A general factor of personality: Evidence from the HEXACO Model and a measure of trait emotional intelligence. Twin Research and Human Genetics, 12, 420424. http://dx.doi.org/10.1375/twin.12.5.420CrossRefGoogle Scholar
Veselka, L., Schermer, J. A., Petrides, K. V., & Vernon, P. A. (2009). Evidence for a heritable general factor of personality in two studies. Twin Research and Human Genetics, 12, 254260. http://dx.doi.org/10.1375/twin.12.3.254CrossRefGoogle ScholarPubMed
Volkow, N. D., Wang, G., Fowler, J. S., Logan, J., Gerasimov, M., Maynard, L., … Francesci, D. (2001). Therapeutic doses of oral methylphenidate significantly increase extracellular dopamine in the human brain. Journal of Neuroscience, 21, 15.CrossRefGoogle ScholarPubMed
Yano, M., & Steiner, H. (2005). Topography of methylphenidate (Ritalin)-induced gene regulation in the striatum: Differential effects on c-fos, substance P and opioid peptides. Neuropsychopharmacology, 30, 901915. http://dx.doi.org/10.1038/sj.npp.1300613CrossRefGoogle ScholarPubMed
Zuckerman, M., & Lubin, B. (1965). Manual for the Multiple Affect Adjective Check List. San Diego, CA: Edits.Google Scholar