Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-12T22:58:32.326Z Has data issue: false hasContentIssue false

Arithmetical Difficulties and Low Arithmetic Achievement: Analysis of the Underlying Cognitive Functioning

Published online by Cambridge University Press:  20 June 2016

Valentín Iglesias-Sarmiento*
Affiliation:
Universidade de Vigo (Spain)
Manuel Deaño
Affiliation:
Universidade de Vigo (Spain)
*
*Correspondence concerning this article should be addressed to Valentín Iglesias Sarmiento. Departamento de Psicología Evolutiva y Comunicación. Facultad de Ciencias de la Educación. Universidad de Vigo. Campus Ourense. As Lagoas S/N. 32004. Ourense (Spain). Phone: +34–988387226. E-mail: [email protected]

Abstract

This study analyzed the cognitive functioning underlying arithmetical difficulties and explored the predictors of arithmetic achievement in the last three grades of Spanish Primary Education. For this purpose, a group of 165 students was selected and divided into three groups of arithmetic competence: Mathematical Learning Disability group (MLD, n = 27), Low Achieving group (LA, n = 39), and Typical Achieving group (TA, n = 99). Students were assessed in domain-general abilities (working memory and PASS cognitive processes), and numerical competence (counting and number processing) during the last two months of the academic year. Performance of children from the MLD group was significantly poorer than that of the LA group in writing dictated Arabic numbers (d = –0.88), reading written verbal numbers (d = –0.84), transcoding written verbal numbers to Arabic numbers (–0.75) and comprehension of place value (d = –0.69), as well as in simultaneous (d = –0.62) and successive (d = –0.59) coding. In addition, a specific developmental sequence was observed in both groups, the implications of which are discussed. Hierarchical regression analysis revealed simultaneous coding (β = .47, t(155) = 6.18, p < .001) and number processing (β = .23, t(155) = 3.07, p < .01) as specific predictors of arithmetical performance.

Type
Research Article
Copyright
Copyright © Universidad Complutense de Madrid and Colegio Oficial de Psicólogos de Madrid 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baddeley, A. D., & Hitch, G. (1974). Working memory. In Bower, G. H. (Ed.), The psychology of learning and motivation (Vol. 8, pp. 4789). San Diego, CA: Academic Press.Google Scholar
Best, J. R., Miller, P. H., & Naglieri, J. A. (2011). Relations between executive function and academical achievement from ages 5 to 17 in a large, representative national simple. Learning and Individual Differences, 21, 327336. http://dx.doi.org/10.1016/j.lindif.2011.01.007 Google Scholar
Barbaresi, W. J., Katusic, S. K., Colligan, R. C., Weaver, A. L., & Jacobsen, S. J. (2005). Math learning disorder: Incidence in a population based birth cohort, 1976–1982, Rochester, Minn. Ambulatory Pediatrics, 5, 281289. http://dx.doi.org/10.1367/A04-209R.1 Google Scholar
Butterworth, B. (2005). The development of arithmetical abilities. Journal of Child Psychology and Psychiatry, 46(1), 318. http://dx.doi.org/10.1111/j.1469-7610.2004.00374.x Google Scholar
Cai, D., Li, Q. W., & Deng, C. P. (2013). Cognitive processing characteristics of 6th to 8th grade Chinese students with mathematics learning disability: Relationships among working memory, PASS processes, and processing speed. Learning and Individual Differences, 27, 120127. http://dx.doi.org/10.1016/j.lindif.2013.07.008 CrossRefGoogle Scholar
Das, J. P., Naglieri, J. A., & Kirby, J. R. (1994). Assessment of cognitive processes: The PASS theory of intelligence. Boston, MA: Allyn & Bacon.Google Scholar
Davidson, M. C., Amso, D., Anderson, L. C., & Diamond, A. (2006). Development of cognitive control and executive functions from 4–13 years: Evidence from manipulations of memory, inhibition, and task switching. Neuropsychologia, 44, 20372078. http://dx.doi.org/10.1016/j.neuropsychologia.2006.02.006 Google Scholar
Deaño, M. (2000). Cómo prevenir las dificultades de cálculo. [How to prevent calculation disabilities] Málaga, Spain: Aljibe.Google Scholar
Deaño, M., Alfonso, S., & Fernández, M. J. (2006). El D.N: CAS como sistema de evaluación cognitiva para el aprendizaje [The D.N: CAS as a cognitive assessment system of learning.]. In Deaño, M. (Ed.), Formación del profesorado para atender a las necesidades específicas de apoyo educativo. XXXII Reunión Científica Anual [Teachers training to meet the specific needs of educational support. XXXII Anual scientific meeting]. (pp. 159182). Ourense, Spain: AEDES.Google Scholar
De Smedt, B., Verschaffel, L., & Ghesquière, P. (2009). The predictive value of numerical magnitude comparison for individual differences in mathematics achievement. Journal of Experimental Child Psychology, 103, 469479. http://dx.doi.org/10.1016/j.jecp.2009.01.010 Google Scholar
Fuchs, L. S., Fuchs, D., Compton, D. L., Powell, S. R., Seethaler, P. M., Capizzi, A. M., … Fletcher, J. M. (2006). The cognitive correlates of third-grade skills in arithmetic, algorithmic computation and arithmetic word problems. Journal of Educational Psychology, 98(1), 2943. http://dx.doi.org/10.1037/0022-0663.98.1.29 Google Scholar
Fuchs, L. S., Geary, D. C., Compton, D. L., Fuchs, D., Hamlett, C. L., & Bryant, J. D. (2010). The contributions of numerosity and domain-general abilities to school readiness. Child Development, 81, 15201533. http://dx.doi.org/10.1111/j.1467-8624.2010.01489.x CrossRefGoogle ScholarPubMed
Garofalo, J. (1986). Simultaneous synthesis, regulation, and arithmetical performance. Journal of Psychoeducational Assessment, 4, 229238. http://dx.doi.org/10.1177/073428298600400306 Google Scholar
Gathercole, S. E., & Alloway, T. P. (2008). Working memory and learning. A practical guide for teachers. London, UK: Sage Publications.Google Scholar
Geary, D. C. (2011). Cognitive predictors of individual differences in achievement growth in mathematics: A 5-year longitudinal study. Developmental Psychology, 47, 15391552. http://dx.doi.org/10.1037/a0025510 Google Scholar
Geary, D. C., Bailey, D. H., Littlefield, A., Wood, P., Hoard, M. K., & Nugent, L. (2009). First-grade predictors of mathematical learning disability: A latent class trajectory analysis. Cognitive Development, 24, 411429. http://dx.doi.org/10.1016/j.cogdev.2009.10.001 CrossRefGoogle ScholarPubMed
Geary, D. C., Hoard, M. K., Byrd-Craven, J., & DeSoto, M. C. (2004). Strategy choices in simple and complex addition: Contributions of working memory and counting knowledge for children with mathematical disability. Journal of Experimental Child Psychology, 88, 121151. http://dx.doi.org/10.1016/j.jecp.2004.03.002 Google Scholar
Geary, D. C., Hoard, M. K., Byrd-Craven, J., Nugent, L., & Numtee, C. (2007). Cognitive mechanisms underlying achievement deficits in children with mathematical learning disability. Child Development, 78, 13431359. http://dx.doi.org/10.1111/j.1467-8624.2007.01069.x Google Scholar
Holloway, I. D., & Ansari, D. (2009). Mapping numerical magnitudes onto symbols: The numerical distance effect and individual differences in children’s mathematics achievement. Journal of Experimental Child Psychology, 103, 1729. http://dx.doi.org/10.1016/j.jecp.2008.04.001 Google Scholar
Iglesias-Sarmiento, V., & Deaño, M. (2011). Cognitive processing and mathematical achievement: A study with schoolchildren between 4th and 6th grade of primary education. Journal of Learning Disabilities, 44, 570583. http://dx.doi.org/10.1177/0022219411400749 Google Scholar
Imbo, I., & Vandierendonck, A. (2007). The role of phonological and executive working memory resources in simple arithmetic strategies. European Journal of Cognitive Psychology, 19, 910933. http://dx.doi.org/10.1080/09541440601051571 Google Scholar
Luria, A. R. (1966). Human brain and psychological processes. New York, NY: Harper & Row.Google Scholar
Kroesbergen, E. H., van Luit, J. E. H., & Naglieri, J. A. (2003). Mathematics learning difficulties and PASS cognitive processes. Journal of Learning Disabilities, 36, 574582. http://dx.doi.org/10.1177/00222194030360060801 Google Scholar
Kroesbergen, E. H., van Luit, J. E. H., Naglieri, J. A., Taddei, S., & Franchi, E. (2010). PASS processes and early mathematics skills in Dutch and Italian kindergartners. Journal of Psychoeducational Assessment, 28, 585593. http://dx.doi.org/10.1177/0734282909356054 Google Scholar
Mazzocco, M. M. M. (2007). Defining and differentiating mathematical learning disabilities and difficulties. In Berch, D. & Mazzocco, M. M. M. (Eds.), Why is math so hard for some children. The nature and origins of mathematical learning difficulties and disabilities (pp. 2947). Baltimore, MD: Paul H. Brookes.Google Scholar
McKenzie, B., Bull, R., & Gray, C. (2003). The effects of phonological and visual-spatial interference on children’s arithmetical performance. Educational and Child Psychology, 20, 93107.Google Scholar
McLean, J. F., & Hitch, G. J. (1999). Working memory impairments in children with specific arithmetic learning difficulties. Journal of experimental Child Psychology, 67, 345357. http://dx.doi.org/10.1006/jecp.1999.2516 Google Scholar
Meyer, M. L., Salimpoor, V. N., Wu, S. S., Geary, D. C., & Menon, V. (2010). Differential contribution of specific working memory components to mathematical skills in 2nd and 3rd graders. Learning and Individual Differences, 20, 101109. http://dx.doi.org/10.1016/j.lindif.2009.08.004 Google Scholar
Miyake, A., Friedman, N., Emerson, M. J., Witzki, A. H., Howerter, A., & Wager, T. D. (2000). The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: A latent variable analysis. Cognitive Psychology, 41, 49100. http://dx.doi.org/10.1006/cogp.1999.0734 Google Scholar
Naglieri, J. A., & Das, J. P. (1997). Cognitive assessment system. Itasca, IL: Riverside Publishing.Google Scholar
Naglieri, J. A., & Das, J. P. (2005). The PASS theory. In Flanagan, D. P. & Harrison, P. L. (Eds.), Contemporary intellectual assessment (pp. 120135. 2 nd Ed.). New York, NY: Guilford.Google Scholar
Naglieri, J. A., Rojahn, J., & Matto, H. C. (2007). Hispanic and non-Hispanic children’s performance on PASS cognitive processes and achievement. Intelligence, 35, 568579. http://dx.doi.org/10.1016/j.intell.2006.11.001 Google Scholar
OECD (2013). Programme for International Student Assessment (PISA). Volume 2: Data. Paris, France: Author.Google Scholar
Passolungui, M. C., & Lanfranchi, S. (2012). Domain-specific and domain-general precursors of mathematical achievement: A longitudinal study from kindergarten to first grade. British Journal of Educational Psychology, 82(1), 4263. http://dx.doi.org/10.1111/j.2044-8279.2011.02039.x Google Scholar
Passolungui, M. C., & Mammarella, I. C. (2012). Selective spatial working memory impairment in a group of children with mathematics learning disabilities and poor problem-solving skills. Journal of Learning Disabilities, 45, 341350. http://dx.doi.org/10.1177/0022219411400746 Google Scholar
Passolunghi, M. C., Vercelloni, B., & Schadee, H. (2007). The precursors of mathematics learning: Working memory, phonological ability, and numerical competence. Cognitive Development, 22, 165184. http://dx.doi.org/10.1016/j.cogdev.2006.09.001 Google Scholar
Raghubar, K. P., Barnes, M. A., & Hecht, S. A. (2010). Working memory and mathematics: A review of developmental, individual difference, and cognitive approaches. Learning and Individual Differences, 20, 110122. http://dx.doi.org/10.1016/j.lindif.2009.10.005 Google Scholar
Swanson, H. L., Jerman, O., & Zheng, X. (2008). Growth in working memory and mathematical problem solving in children at risk and not at risk for serious math difficulties. Journal of Educational Psychology, 100, 343379. http://dx.doi.org/10.1037/0022-0663.100.2.343 Google Scholar
Temple, C. M., & Sherwood, S. (2002). Representation and retrieval of arithmetical facts: Developmental difficulties. Quarterly Journal of Experimental Psychology, 55(1), 733752. http://dx.doi.org/10.1080/02724980143000550 Google Scholar
Trbovich, P. L., & LeFevre, J. (2003). Phonological and visual working memory in mental addition. Memory & Cognition, 31, 738745. http://dx.doi.org/10.3758/BF03196112 Google Scholar
Vanbinst, K., Ghesquière, P., & De Smedt, B. (2014). Arithmetic strategy development and its domain-specific and domain-general cognitive correlates: A longitudinal study in children with persistent mathematical learning difficulties. Research in Developmental Disabilities, 35, 30013013. http://dx.doi.org/10.1016/j.ridd.2014.06.023 Google Scholar
van der Sluis, S., van der Leij, A., & de Jong, P. F. (2005). Working memory in Dutch children with reading- and arithmetic-related LD. Journal of Learning Disabilities, 38, 207221. http://dx.doi.org/10.1177/00222194050380030301 Google Scholar
von Aster, M. G., & Shalev, R. S. (2007). Number development and developmental dyscalculia. Developmental Medicine & Child Neurology, 49, 868873. http://dx.doi.org/10.1111/j.1469-8749.2007.00868.x Google Scholar
Watters, J. J., & English, L. D. (1995). Children’s application of simultaneous and successive processing in inductive and deductive reasoning problems: Implications for developing scientific reasoning. Journal of Research in Science Teaching, 32, 699714. http://dx.doi.org/10.1002/tea.3660320705 Google Scholar
Warrick, P. D. (1989). Investigation of the PASS model (planning, attention, simultaneous, successive) of cognitive processing and mathematics achievement. (Unpublished doctoral dissertation). Ohio State University, Columbus.Google Scholar
Wechsler, D. (1974). Manual for the Wechsler Intelligence Scale for Children (Revised). New York, NY: Psychological Corporation.Google Scholar
Wechsler, D. (1993). Escala de Inteligencia de Wechsler para Niños-Revisada (WISC-R) [Manual for the Wechsler Intelligence Scale for Children]. Madrid, Spain: TEA.Google Scholar
Zorzi, M., Priftis, K., & Umiltà, C. (2002). Brain damage: Neglect disrupts the mental number line. Nature, 417, 138139. http://dx.doi.org/10.1038/417138a Google Scholar