Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-09T21:55:32.382Z Has data issue: false hasContentIssue false

Trace Fossils of Plant-Arthropod Interactions

Published online by Cambridge University Press:  17 July 2017

Andrew C. Scott*
Affiliation:
Geology Department, Royal Holloway and Bedford New College, University of London, Egham, Surrey TW20 0EX, United Kingdom

Extract

An examination of any modern terrestrial ecosystem will reveal a vast array of arthropod (particularly insect) — plant interactions. It has been calculated that there are more than one million extant insect species, more than 400,000 plant species, and that the total number of their interactions exceeds their combined total. Studies of the co-evolution of insects and plants have indicated that the development of these interactions must have taken considerable time (Southwood, 1973, 1985; Strong et al., 1984). For example, the evolution of the angiosperms (flowering plants) and insects are seen to be closely interlinked (Friis et al., 1987).

Type
Research Article
Copyright
Copyright © 1992 Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, J.M., and Anderson, H.M. 1989. Palaeoflora of Southern Afria. Molteno Formation (Triassic). Vol. 2. Gymnosperms (excluding Dicroidium). A.A. Balkema, Rotterdam.Google Scholar
Banks, H.P. 1981. Peridermal activety (wound repair) in an Early Devonian (Emsian) trimerophyte from Gaspe Peninsula, Canada. Palaeobotanist, 28-29:2025.Google Scholar
Baxendale, R.W. 1979. Plant-bearing coprolites from North American Pennsylvanian coal balls. Palaeontology. 22:537548.Google Scholar
Bernays, E.A. 1991. Evolution of insect morphology in relation to plants. Philosophical Transactions of the Royal Society B, 333:257264.Google Scholar
Berry, E.W. 1931. An insect-cut leaf from the Lower Eocene. American Journal of Science, ser. 5, 21:301304.CrossRefGoogle Scholar
Boucot, A.J. 1990. Evolutionary paleobiology of behaviour and co-evolution. Elsevier, Amsterdam, 725 p.Google Scholar
Brooks, H.K. 1955. Healed wounds and galls on fossil leaves from the Wilcox deposits (Eocene) of Western Tennessee. Psyche, 62:19.CrossRefGoogle Scholar
Brues, C.T. 1936. Evidences of insect activity preserved in wood. Journal of Paleontology, 10:637643.Google Scholar
Brues, C.T. 1946. Insect Dietry. Harvard University Press, Cambridge, Massachuesetts.CrossRefGoogle Scholar
Carpenter, F.M., and Burnham, L. 1985. The geological record of insects. Annual Review of Earth and Planetary Sciences, 13:297314.CrossRefGoogle Scholar
Chaloner, W.G., Harper, J.L., and Lawton, J. 1991. The evolutionary interactions of animals and plants. Philosophical Transactions of the Royal Society of London B, 333:177305.Google Scholar
Chaloner, W.G., Scott, A.C., and Stephenson, J. 1991. Fossil evidence for plant-arthropod interaction in the Palaeozoic and Mesozoic. Philosophical Transactions of the Royal Society of London B, 333:177186.Google Scholar
Chrystal, R.N. 1937. Insects of the British Woodlands. Warne & Co., London.Google Scholar
Cichan, M.A., and Taylor, T.N. 1982. Wood-borings in Premnoxylon: Plant-animal interactions in the Carboniferous. Palaeontology, Palaeoclimatology, Palaeoecology, 39:123127.CrossRefGoogle Scholar
Collinson, M.E. 1990. Plant evolution and ecology during the early Cainozoic diversification. Advances in Botanical Research, 17, 198.CrossRefGoogle Scholar
Condon, M., and Whalen, M.D. 1983. A plea for collection and preservation of herbivor and pathogen damaged plant materials. Taxon, 32:105107.CrossRefGoogle Scholar
Crane, P.R., and Jarzembowski, E.A. 1980. Insect leaf mines from the Palaeocene of southern England. Journal of Natural History, 14:629636.CrossRefGoogle Scholar
Edwards, P.J., and Wratten, S.D. 1983. Wound induced defences in plants and their consequences for patterns of insect grazing. Oecologia, 59:8893.CrossRefGoogle ScholarPubMed
Friis, E.M., Chaloner, W.G., and Crane, P.R., eds. 1987. The origin of angiosperms and their biological consequences. Cambridge University Press, Cambridge, UK.Google Scholar
Gillanders, A.T. 1908. Forest Entomology. W. Blackwood & Sons, Edinburgh, 422 p.Google Scholar
Givulescu, R. 1984. Pathological elements on fossil leaves from Chiuzbaia (Galls, Mines and other Insect Traces). Dari de Seama ale Sedintelor, 69(1981):123133.Google Scholar
Harland, W.B., Armstrong, R.L., Cox, A.V., Craig, L.E., Smith, A.G., and Smith, D.G. 1990. A Geologic Time Scale 1989. Cambridge University Press, Cambridge, 263 p.Google Scholar
Hering, E.M. 1951. Biology of the Leaf Miners. Junk, s'Gravenhage, Netherlands, 420 p.CrossRefGoogle Scholar
Hickey, L.J., and Hodges, R.W. 1975. Lepidopteran leaf mine from the Early Eocene Wind River Formation of Northwestern Wyoming. Science, 189:718720.CrossRefGoogle ScholarPubMed
Hickin, N.E. 1952. Caddis. Methuen, London.Google Scholar
Jacot, A.P. 1939. Reduction of spruce and fir litter by minute animals. Journal of forestry, 37:858860.Google Scholar
Jarzembowski, E. A. 1989. A century plus of fossil insects. Proceedings of the Geologists Association, 100:433449.CrossRefGoogle Scholar
Jarzembowski, E. A. 1990. A boring beetle from the Wealden of the Weald, p. 373376. In Boucot, A.J., ed., Evolutionary Paleobiology of Behaviour and Co-Evolution. Elsevier, Amsterdam.Google Scholar
Khan, M.B., and Harborne, J.B. 1990. Induced alkaloid defence in Atropa acuminata in response to mechanical and herbivore leaf damage. Chemoecology, 1:7780.CrossRefGoogle Scholar
Kirkpatrick, T.W. 1957. Insect Life in the Tropics. Longmans, Green and Co. London.Google Scholar
Kubiena, W.L. 1955. Animal activity in soils as a decisive factor in establishment of humus forms, p. 7382. In Kevan, D.K. McE., ed., Soil Zoology. Butterworths, London.Google Scholar
Kuhnelt, W. 1955. An introduction to the study of soil animals, p. 39. In Kevan, D.K. McE., ed., Soil Zoology. Butterworths, London.Google Scholar
Larew, H.G. 1986. The fossil gall record, a brief summary. Proceedings of the Entomological Society of Washington, 88:385388.Google Scholar
Lancucka-Srodoniowa, M. 1964. Tertiary coprolites imitating fruits of the Araliaceae. Acta Societatis Botanicorum Poloniae, 33:469473.CrossRefGoogle Scholar
Lesnikowska, A.D. 1990. Evidence of herbivory in tree-fern petioles from the Calhoun Coal (Upper Pennsylvanian) of Illinois. Palaios, 5:7680.CrossRefGoogle Scholar
Lewis, S.E. 1976. Lepidopterous feeding damage of live oak leaf (Quercus convexa Lesquereux) from the Ruby River Basin (Oligocene) of Southwestern Montana. Journal of Paleontology, 50:345346.Google Scholar
Light, S.F. 1930. Fossil Termite pellets from the Seminole Pleistocene. Bulletin of Geology—University of California, 19:7581.Google Scholar
Linck, O. 1949. Fossile Bohrgange (Anobichnium simile n.g., n.sp.) an einem Keuperholz. Neus Jarbuch fur Mineralogie und Palaontologie Monatshefte, 4-6:180185.Google Scholar
Mackay, R.J., and Wiggins, G.B. 1979. Ecological diversity in the Trichoptera. Annual Review of Entomology, 24:185208.CrossRefGoogle Scholar
Martin, M.M. 1991. The evolution of cellulose digestion in insects. Philosophical Transactions of the Royal Society B, 333:281288.Google Scholar
Meyer, J. 1987. Plant Galls and Gall Inducers. Gebruder Borntraeger, Berlin, 291 p.Google Scholar
Plumstead, E.P. 1963. The influence of plants and environment on the developing animal life in Karoo times. South African Journal of Science, 59:147152.Google Scholar
Pollard, J.E., and Hardy, P.G. 1991. Trace fossils from the Westphalian D Coal Measures at Writhlington, Avon. Proceedings of the Geologists' Association, 102:169178.CrossRefGoogle Scholar
Radwanski, A. 1977. Present-day types of trace in the Neogene sequence; their problems of nomenclature and preservation, p. 227264. In Crimes, T.P. and Harper, J.C., eds., Trace Fossils 2. Geological Journal Special Issue 9. Seel House Press, Liverpool.Google Scholar
Retallack, G. 1990. The work of dung beetles and its fossil record, p. 214226. In Boucot, A.J., ed., Evolutionary Paleobilogy of Behavior and Coevolution. Elsevier, Amsterdam.Google Scholar
Rothwell, G.W., and Scott, A.C. 1983. Coprolites within the marattiaceous fern stems (Psaronius magnificus) from the Upper Pennsylvanian of the Appalachian Basin, U.S.A. Palaeogeography, Palaeoclimatology, Palaeoecology, 41:227232.CrossRefGoogle Scholar
Rothwell, G.W., and Scott, A.C. 1988. Heterotheca Benson; Lyginopterid pollen organs or coprolites? Bulletin of the British Museum Natural History (Geology), 44:4143.Google Scholar
Rozefelds, A.C. 1988a. Lepidoptera Mines in Pachypteris Leaves (Corystospermaceae: Pteridospermophyta) from the Upper Jurassic/Lower Cretaceous Battle Camp Formation North Queensland. Proceedings of the Royal Society of Queensland, 99:7781 Google Scholar
Rozefelds, A.C. 1988b. Insect leaf mines from the Eocene Anglsea locality, Victoria, Australia. Alcheringa, 12:16.CrossRefGoogle Scholar
Rozefelds, A.C., and Sobbe, I. 1987. Problematic insect leaf mines from the Upper Triassic Ipswich Coal Measures of southeastern Queensland, Australia. Alcheringa, 11:5157.CrossRefGoogle Scholar
Scott, A.C. 1977. Coprolites containing plant material from the Carboniferous of Britain. Palaeontology, 20:5968.Google Scholar
Scott, A.C., 1991. Evidence for plant-arthropod interactions in the fossil record. Geology Today, 7:5861.CrossRefGoogle Scholar
Scott, A.C., Chaloner, W.G., and Paterson, S. 1985. Evidence of pteridophyte-arthropod interactions in the fossil record. Proceedings of the Royal Society of Edinburgh, 86B:133140.Google Scholar
Scott, A.C., and Paterson, S. 1984. Techniques for the study of plant/arthropod interactions in the fossil record. Geobios Memoire Special, 8:449455.CrossRefGoogle Scholar
Scott, A.C., Stephenson, J., and Chaloner, W.G. 1992. Interaction and coevolution of plants and arthropods during the Palaeozoic and Mesozoic. Philosophical Transactions of the Royal Society of London B, 335:129165.Google Scholar
Scott, A.C., and Taylor, T.N. 1983. Plant/animal interactions during the Upper Carboniferous. The Botanical Review, 49:259307.CrossRefGoogle Scholar
Sharov, A.G. 1973. Morphological features and way of life of the Palaeodictyoptera. [In Russian]. Doklady Chteniya Pamyati Nikolaya Aleksahdrovicha Kholodkovskogo, 23:4963.Google Scholar
Shear, W.A., and Kukalova-Peck, J. 1990. The ecology of Paleozoic terrestrial arthropods: the fossil evidence. Canadian Journal of Zoology, 68:18071834.CrossRefGoogle Scholar
Southgate, B.J. 1979. Biology of the Bruchidae. Annual Review of Entomology, 24:449473.CrossRefGoogle Scholar
Southwood, T.R.E. 1973. The insect/plant relationship—an evolutionary perspective. In Van Emden, H.F., ed., Insect/Plant Relationships. Symposium of the Royal Entomological Society of London, 6:330.Google Scholar
Southwood, T.R.E. 1985. Interactions of plants and animals: pattern and process. Oikos, 44:511.CrossRefGoogle Scholar
Spicer, R.A. 1989. The formation and interpretation of plant fossil assemblages. Advances in Botanical Research, 16:95191.CrossRefGoogle Scholar
Stephenson, J., and Scott, A.C. 1992. The geological history of arthropod damage to plants. Terra Nova, 4: in press.CrossRefGoogle Scholar
Straus, A. 1977. Gallen, Minen und andere Frasspuren im Pliokan von Willerhausen am Harz. Verhandlungen des Botanischen Vereins der Provinz Brandenburg, 113:4180.Google Scholar
Strong, D.R., Lawton, J.H., and Southwood, T.R.E. 1984. Insects on plants: Community Patterns and Mechanisms. Blackwell Scientific Publications, Oxford, 313 p.Google Scholar
Sukatsheva, D. 1982. Istoricheskoye Razuitiye Otryada Rucheinikov. Trudy Instute, Akademia Nauk, S.S.S.R., 197:1111.Google Scholar
Swanton, E.W. 1912. British Plant Galls. Methuen, London, 287 p.Google Scholar
Uvarov, B. 1966. Grasshoppers and Locusts. Cambridge University Press.Google Scholar
Van Amerom, H.W.J. 1966. Phagophytichnus ekowsskii nov. ichnogen. & nov. ichnosp., eine missbildung infolge von insektenfrass, aus dem Spanischen Stephanien (Provinz Leon). Leidse Geologishe Mededelingen, 38:181184.Google Scholar
Wallwork, J.A. 1976. The Distribution and Diversity of Soil Fauna. Academic Press, London.Google Scholar
Wooton, R.J. 1988. The historical ecology of aquatic insects: an overview. Palaeogeography, Palaeoclimatology, Palaeoecology, 62:477492.CrossRefGoogle Scholar
Zanettii, A. 1979. The World of Insects. Aberville Press, New York, 256 p.Google Scholar