Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-09T21:45:34.091Z Has data issue: false hasContentIssue false

Siliceous Chrysophycean Microfossils: Recent Advances and Applications to Paleoenvironmental Investigations

Published online by Cambridge University Press:  17 July 2017

Katharine E. Duff
Affiliation:
Department of Biology, University of New Brunswick, Fredericton E3B 6E1 Canada
Barbara A. Zeeb
Affiliation:
Paleoecological Environmental Assessment and Research Laboratory, Department of Biology, Queen's University, Kingston, Ontario K7L 3N6 Canada

Extract

Chrysophytes are a diverse group of algae, commonly known as the golden-brown algae (Bold and Wynne, 1978), and consist of two classes, the Chrysophyceae and Synurophyceae (Andersen, 1987). Over 800 species have been described (Kristiansen, 1990; Kristiansen and Takahashi, 1982; Preisig, 1995), and it is estimated that more than 1,000 species exist. Chrysophytes are distinguished from other algae on the basis of chloroplast type and structure, photosynthetic pigments, storage product, flagellar apparatus, and especially the production of a siliceous resting stage, called the stomatocyst, statospore, or cyst (Hibberd, 1976; Kristiansen, 1990; Kristiansen and Takahashi, 1982).

Type
Research Article
Copyright
Copyright © 1995 Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adam, D. P., and Mahood, A. D. 1979. A preliminary annotated bibliography on siliceous algal cysts and scales. U.S. Geological Survey Open-file Report, 79-1215: 134.Google Scholar
Andersen, R. A. 1987. Synurophyceae classis nov., a new class of algae. American Journal of Botany, 74:337353.Google Scholar
Asmund, B., and Kristiansen, J. 1986. The genus Mallomonas (Chrysophyceae). Opera Botanica, 85:1128.Google Scholar
Battarbee, R. W., Cronberg, G., and Lowry, S. 1980. Observations on the occurrence of scales and bristles of Mallomonas spp. (Chrysophyceae) in the microlaminated sediments of a small lake in Finnish North Karelia. Hydrobiologia, 71:225232.Google Scholar
Battarbee, R. W., Mason, J., Renberg, I., and Talling, J. F. 1990. Palaeolimnology and Lake Acidification. The Royal Society, London, 219 p.Google Scholar
Birks, H. J. B., Line, J. M., Juggins, S., Stevenson, A. C., and Ter Braak, C. J. F. 1990. Diatoms and pH reconstruction. Philosophical Transactions of the Royal Society of London, Series B, 327:263278.Google Scholar
Birks, H. J. B., Peglar, S. M., and Austin, H. A. 1994. An annotated bibliography of canonical correspondence analysis and related constrained ordination methods 1986-1993. Botanical Institute, University of Bergen, Norway, 58 p.Google Scholar
Bold, H. C., and Wynne, M. J. 1978. Introduction to the Algae (2nd ed). Prentice-Hall, Englewood Cliffs, New Jersey, 720 p.Google Scholar
Brown, K. M., Douglas, M. S. V., and Smol, J. P. 1994. Siliceous microfossils in a Holocene, High Arctic peat deposit (Nordvestø, northwestern Greenland). Canadian Journal of Botany, 72:208216.CrossRefGoogle Scholar
Cambra, J. 1989. Sphaeridiothrix compressa and Phaeothamnion articulatum, two new records for the Spanish chrysophyte flora. Beiheft zur Nova Hedwigia, 95:259267.Google Scholar
Carney, H. J., and Sandgren, C. D. 1983. Chrysophycean cysts: indicators of eutrophication in the recent sediments of Frains Lake, Michigan, U.S.A. Hydrobiologia, 101:195202.CrossRefGoogle Scholar
Carney, H. J., Whiting, M. C., Duff, K. E., and Whitehead, D. R. 1992. Chrysophycean cysts in Sierra Nevada (California) lake sediments: paleoecological potential. Journal of Paleolimnology, 7:7394.Google Scholar
Charles, D. F., and Smol, J. P. 1988. New methods for using diatoms and chrysophytes to infer past pH of low-alkalinity lakes. Limnology and Oceanography, 33:14511462.Google Scholar
Charles, D. F., and Smol, J. P. 1990. The PIRLA II project: regional assessment of lake acidification trends. Internationale Vereinigung für Theoretische und Angewandte Limnologie Verhandlungen, 24:474480.Google Scholar
Charles, D. F., and Smol, J. P. 1994. Long-term chemical changes in lakes: quantitative inferences using biotic remains in the sediment record, p. 331. In Baker, L. (ed.), Environmental Chemistry of Lakes and Reservoirs. American Chemical Society Books, Advances in Chemistry Series 237, Washington, D.C. CrossRefGoogle Scholar
Charles, D. F., and Whitehead, D. R. 1986. The PIRLA project: paleoecological investigations of recent lake acidification. Hydrobiologia, 143:1320.Google Scholar
Charles, D. F., Whitehead., D. R., Anderson, D. S., Bienert, R., Camburn, K. E., Cook, R. B., Crisman, T. L., Davis, R. B., Fry, B. D., Hites, R. A., Kahl, J. S., Kingston, J. C., Kreis, R. G. Jr., Mitchell, M. J., Norton, S. A., Roll, L. A., Smol, J. P., Sweets, P. R., Uutala, A. J., White, J. R., Whiting, M. C., and Wise, R. J. 1986. The PIRLA project (Paleoecological Investigation of Recent Lake Acidification): preliminary results for the Adirondack, New England, N. Great Lake States, and N. Florida. Water, Air, and Soil Pollution, 30:355365.Google Scholar
Christie, C. E., and Smol, J. P. 1986. Recent and long-term acidification of Upper Wallface Pond (N.Y.) as indicated by mallomonadacean microfossils. Hydrobiologia, 143:355360.Google Scholar
Cronberg, G. 1986a. Blue-green algae, green algae and chrysophyceae in sediments, p. 507526. In Berglund, B. E. (ed.), Handbook of Holocene Palaeoecology and Palaeohydrology. John Wiley and Sons, Chichester, England.Google Scholar
Cronberg, G. 1986b. Chrysophycean cysts and scales in lake sediments: a review, p. 281315. In Kristiansen, J. and Andersen, R. A. (eds.), Chrysophytes: Aspects and Problems. Cambridge University Press, Cambridge.Google Scholar
Cronberg, G., and Sandgren, C. D. 1986. A proposal for the development of standardized nomenclature and terminology for chrysophycean statospores, p. 317328. In Kristiansen, J. and Andersen, R.A. (eds.), Chrysophytes: Aspects and Problems. Cambridge University Press, Cambridge.Google Scholar
Cumming, B. F., Davey, K. A., Smol, J. P., and Birks, H. J. B. 1994. When did acid-sensitive Adirondack lakes (New York, USA) begin to acidify and are they still acidifying? Canadian Journal of Fisheries and Aquatic Sciences, 51:15501568.Google Scholar
Cumming, B. F., and Smol, J. P. 1993. Development of diatom-based salinity models for paleoclimatic research from lakes in British Columbia (Canada). Hydrobiologia, 269/270:179196.Google Scholar
Cumming, B. F., Smol., J. P., and Birks, H. J. B. 1992a. Scaled chrysophytes (Chrysophyceae and Synurophyceae) from Adirondack drainage lakes and their relationship to environmental variables. Journal of Phycology, 28:162178.Google Scholar
Cumming, B. F., Smol., J. P., Kingston, J. C., Charles, D. F., Birks, H. J. B., Camburn, K. E., Dixit, S. S., Uutala, A. J., and Selle, A. R. 1992b. How much acidification has occurred in Adirondack region lakes (New York, U.S.A.) since preindustrial times? Canadian Journal of Fisheries and Aquatic Sciences, 49:128141.Google Scholar
Cumming, B. F., Wilson, S. E., and Smol, J. P. 1993. Paleolimnological potential of chrysophyte cysts and scales and of sponge spicules as indicators of lake salinity. International Journal of Salt Lake Research, 2:8792.Google Scholar
Davis, R. B., and Anderson, D. S. 1985. Methods of pH calibration of sedimentary diatom remains for reconstructing history of pH in lakes. Hydrobiologia, 120:6987.Google Scholar
Dean, W. A., Bradbury, J. P., Anderson, R. Y., and Barnowsky, C. W. 1984. The variability of Holocene climate change: evidence from varved lake sediments. Science, 226:11911194.Google Scholar
Dixit, A. S., Dixit, S. S., and Smol, J. P. 1992. 437–Long-term trends in lake water pH and metal concentrations inferred from diatoms and chrysophytes in three lakes near Sudbury, Ontario. Canadian Journal of Fisheries and Aquatic Sciences, 49 (Supplement 1):1724.Google Scholar
Dixit, S. S., Dixit, A. S., and Smol, J. P. 1989a. Lake acidification recovery can be monitored using chrysophycean microfossils. Canadian Journal of Fisheries and Aquatic Sciences, 46:13091312.Google Scholar
Dixit, S. S., Dixit, A. S., and Smol, J. P. 1989b. Relationship between chrysophyte assemblages and environmental variables in 72 Sudbury lakes as examined by Canonical Correspondence Analysis (CCA). Canadian Journal of Fisheries and Aquatic Sciences, 46:16671676.Google Scholar
Dixit, S. S., Dixit, A. S., and Smol, J. P. 1990. Paleolimnological investigation of three manipulated lakes from Sudbury, Canada. Hydrobiologia, 214:245252.Google Scholar
Dixit, S. S., Dixit, A. S., and Smol, J. P. 1992. Assessment of pre-industrial changes in lakewater chemistry in Sudbury area lakes. Canadian Journal of Fisheries and Aquatic Sciences, 49 (Supplement 1):816.CrossRefGoogle Scholar
Dixit, S. S., and Smol, J. P. 1994. Diatoms as indicators in the Environmental Monitoring and Assessment Program437–Surface Waters (EMAP437–SW). Environmental Monitoring and Assessment, 31:275306.Google Scholar
Dop, A. J. 1980. Benthic Chrysophyceae from The Netherlands. Unpublished Ph.D. dissertation, Vrije University, Amsterdam, 141 p.Google Scholar
Duff, K. E. 1994. Relationships of Chrysophycean Stomatocyst Assemblages in Lake Sediments to Environmental Variables. , Queen's University, Kingston, 179 p.Google Scholar
Duff, K. E., Douglas, M. S. V., and Smol, J. P. 1992. Chrysophyte cysts in 36 Canadian high arctic ponds. Nordic Journal of Botany, 12:471499.Google Scholar
Duff, K. E., and Smol, J. P. 1988. Chrysophycean stomatocysts from the postglacial sediments of a High Arctic lake. Canadian Journal of Botany, 66:11171128.Google Scholar
Duff, K. E., and Smol, J. P. 1991. Morphological descriptions and stratigraphic distributions of the chrysophycean stomatocysts from a recently acidified lake (Adirondack Park, N.Y.). Journal of Paleolimnology, 5:73113.Google Scholar
Duff, K. E., and Smol, J. P. in press a. Chrysophycean cyst assemblages and their relationship to water chemistry in 71 Adirondack Park (New York, USA) lakes. Archiv für Hydrobiologie, v. 73.Google Scholar
Duff, K. E., and Smol, J. P. in press b. The relationship of chrysophycean stomatocysts to environmental variables in freshwater British Columbian lakes. Canadian Journal of Botany, v. 14.Google Scholar
Duff, K. E., Zeeb, B. A., and Smol, J. P. 1995. Atlas of Chrysophycean Cysts. Kluwer Academic Press, Dordrecht, The Netherlands, 189 p.Google Scholar
Forester, R. M., Delorme, D. L., and Bradbury, J. P. 1987. Mid-Holocene climate in northern Minnesota. Quaternary Research, 28:263273.Google Scholar
Fritz, S. C., Juggins, S., Battarbee, R. W., and Engstrom, D. R. 1991. Reconstructions of past changes in salinity and climate using a diatom-based transfer function. Nature, 352:706708.Google Scholar
Fritz, S. C., Juggins, S., Battarbee, R. W., and Engstrom, D. R. 1993. Diatom assemblages and ionic characterization of lakes of the northern Great Plains, North America: a tool for reconstructing past salinity and climate fluctuations. Canadian Journal of Fisheries and Aquatic Sciences, 50:18441856.Google Scholar
Gayral, P., and Billard, C. 1986. A survey of the marine Chrysophyceae with special reference to the Sarcinochrysidales, p. 3748. In Kristiansen, J. and Andersen, R. A. (eds.), Chrysophytes: Aspects and Problems. Cambridge University Press, Cambridge.Google Scholar
Gutowski, A. 1989. Seasonal succession of scaled chrysophytes in a small lake in Berlin. Beiheft zur Nova Hedwigia, 95:159177.Google Scholar
Hajós, M. 1973. Diatomées du Pannonien Inférieur provenant du bassin Néogène de Csákvár. IIème partie. Acta Botanica Academiae Scientiarum Hungaricae, 18:95118.Google Scholar
Hajós, M. 1974. A pulai Put-3. sz. fúrás felsöpannóniai képzödményeinek Diatoma flórája. Magyar Állami Földtani Intézet Évi Jelentése: 263285.Google Scholar
Hajós, M., and Radócz, G. 1969. Diatomás rétegek a bükkalji alsópannonból. Magyar Állami Földtani Intézet Évi Jelentése: 271297.Google Scholar
Hall, R. I., and Smol, J. P. 1992. A weighted-averaging regression and calibration model for inferring total phosphorus concentration from diatoms in British Columbia (Canada) lakes. Freshwater Biology, 27:417434.Google Scholar
Hall, R. I., and Smol, J. P. 1993. The influence of catchment size on lake trophic status during the hemlock decline and recovery (4800 to 3500 BP) in southern Ontario lakes. Hydrobiologia, 269/270:371390.Google Scholar
Harwood, D. M. 1986. Do diatoms beneath the Greenland Ice Sheet indicate interglacials warmer than present? Arctic, 39:304308.Google Scholar
Haworth, E. Y. 1984. Stratigraphic changes in algal remains (diatoms and chrysophytes) in the recent sediments of Blelham Tarn, English Lake District, p. 165190. In Haworth, E. Y. and Lund, J. W. G. (eds.), Lake Sediments and Environmental History. Leicester University Press, Leicester, England.Google Scholar
Hibberd, D. J. 1976. The ultrastructure and taxonomy of the Chrysophyceae and Prymnesiophyceae (Haptophyceae): a survey with some new observations on the ultrastructure of the Chrysophyceae. Botanical Journal of the Linnean Society, 72:5580.Google Scholar
Hill, M. O. 1973. Reciprocal averaging: an eigenvector method of ordination. Journal of Ecology, 61:237249.Google Scholar
Hill, M. O., and Gauch, H. G. 1980. Detrended correspondence analysis, an improved ordination technique. Vegetatio, 42:4758.Google Scholar
Hilliard, D. K., and Asmund, B. 1963. Studies on Chrysophyceae from some ponds and lakes in Alaska. II. Notes on the genera Dinobryon, Hyalobryon and Epipyxis with descriptions of new species. Hydrobiologia, 22:331397.Google Scholar
Jongman, R. H. G., Ter Braak, C. J. F., and Van Tongeren, O. F. R. 1987. Data Analysis in Community and Landscape Ecology. Pudoc, Wageningen, The Netherlands, 299 p.Google Scholar
Kristiansen, J., 1990. Phylum Chrysophyta, p. 438453. In Margulis, L. et al. (eds.), Handbook of Protoctista. Jones and Bartlett Publishers, Boston.Google Scholar
Kristiansen, J., and Takahashi, E. 1982. Chrysophyceae: introduction and bibliography, p. 698704. In Rosowski, J. R. and Parker, B. C. (eds.), Selected Papers in Phycology II. Phycological Society of America, Lawrence, Kansas.Google Scholar
Lamb, H. H. 1981. An approach to the study of the development of climate and its impact in human affairs, p. 291309. In Wigley, T. M. L. et al., (eds.), Climate and History: Studies in Past Climates and Their Impact on Man. Cambridge University Press, Cambridge.Google Scholar
Lee, R. E. 1980. Phycology. Cambridge University Press, Cambridge, 478 p.Google Scholar
Leventhal, E. A. 1970. The Chrysomonadina. Transactions of the American Philosophical Society, 60:123142.Google Scholar
Line, J. M., Ter Braak, C. J. F., and Birks, H. J. B. 1994. WACALIB version 3.3: a computer program to reconstruct environmental variables from fossil assemblages by weighted averaging and to derive sample-specific errors of prediction. Journal of Paleolimnology, 10:147152.Google Scholar
Martens, H., and Naes, T. 1989. Multivariate Calibration. John Wiley and Sons, Chichester, England, 417 p.Google Scholar
Mitchell, J. G., and Silver, M. W. 1986. Archaemonad (Chrysophyta) cysts: ecological and paleoecological significance. BioSystems, 19:289298.Google Scholar
Munch, C. S. 1980. Fossil diatoms and scales of Chrysophyceae in the recent history of Hall Lake, Washington. Freshwater Biology, 10:6166.Google Scholar
Nygaard, G. 1956. Ancient and recent flora of diatoms and Chrysophyceae in Lake Gribsø. Folia Limnologica Scandinavica, 8:32262.Google Scholar
Paterson, M. J. 1985. Paleolimnological reconstruction of cladoceran response to presumed acidification of four lakes in the Adirondack Mountains (New York). , Indiana University, Bloomington, 200 p.Google Scholar
Peglar, S. M., Fritz, S. C., Alapieti, T., Saarnisto, M., and Birks, H. J. B. 1984. Composition and formation of laminated sediments in Diss Mere, Norfolk, England. Boreas, 13:1328.Google Scholar
Pienaar, R. N. 1980. Chrysophytes, p. 213242. In Cox, E. R. (ed.), Phytoflagellates. Elsevier, New York.Google Scholar
Pienitz, R., Walker, I. R., Zeeb, B. A., Smol, J. P., and Leavitt, P. R. 1992. Biomonitoring past salinity changes in an athalassic subarctic lake. International Journal of Salt Lake Research, 1:91123.Google Scholar
Preisig, H. R. 1995. A modern concept of chrysophyte classification, p. 4674. In Sandgren, C. D. et al. (eds.), Chrysophyte Algae: Ecology, Phylogeny and Development. Cambridge University Press, Cambridge.Google Scholar
Reavie, E. D., Hall, R. I., and Smol, J. P. in press. An expanded weighted-averaging model for inferring past total phosphorus concentrations from diatom assemblages in eutrophic British Columbia lakes. Journal of Paleolimnology.Google Scholar
Rhodes, T. 1991. Effects of Late Holocene Forest Disturbance on an Acidic Maine Lake. Unpublished Ph.D. dissertation, University of Maine, Orono, 241 p.Google Scholar
Round, F. E. 1986. The Chrysophyta - a reassessment, p. 322. In Kristiansen, J. and Andersen, R.A. (eds.), Chrysophytes: Aspects and Problems. Cambridge University Press, Cambridge.Google Scholar
Rull, V. 1986. Diatomeas y crisoficeas en los sedimentos acuáticos de una depresión cárstica del Pirineo catalán. Oecologia Aquatica, 8:1124.Google Scholar
Rybak, M. 1986. The chrysophycean paleocyst flora of the bottom sediments of Kortowskie Lake (Poland) and its ecological significance. Hydrobiologia, 140:6784.Google Scholar
Rybak, M. 1987. Fossil chrysophycean cyst flora of Racze Lake, Wolin Island (Poland) in relation to paleoenvironmental conditions. Hydrobiologia, 150:257272.CrossRefGoogle Scholar
Rybak, M., Rybak, I., and Dickman, M. 1987. Fossil chrysophycean cyst flora in a small meromictic lake in southern Ontario, and its paleoecological interpretation. Canadian Journal of Botany, 65:24252440.Google Scholar
Rybak, M., Rybak, I., and Nicholls, K. 1991. Sedimentary chrysophycean cyst assemblages as paleoindicators in acid sensitive lakes. Journal of Paleolimnology, 5:1972.Google Scholar
Sandgren, C. D. 1983. Morphological variability in populations of chrysophycean resting cysts. I. Genetic (interclonal) and encystment temperature effects on morphology. Journal of Phycology, 19:6470.Google Scholar
Sandgren, C. D. 1988. The ecology of chrysophyte flagellates: their growth and perennation strategies as freshwater phytoplankton, p. 9104. In Sandgren, C. D. (ed.), Growth and Reproductive Strategies of Freshwater Phytoplankton. Cambridge University Press, Cambridge.Google Scholar
Sandgren, C. D. 1991. Chrysophyte reproduction and resting cysts: a paleolimnologist's primer. Journal of Paleolimnology, 5:19.Google Scholar
Siver, P. A. 1991a. The Biology of Mallomonas: Morphology, Taxonomy and Ecology. Kluwer Academic Publishers, Dordrecht, The Netherlands, 230 p.Google Scholar
Siver, P. A. 1991b. Implications for improving paleolimnological inference models utilizing scale-bearing siliceous algae: transforming scale counts to cell counts. Journal of Paleolimnology, 5:219225.Google Scholar
Siver, P. A. 1993. Inferring lakewater specific conductivity with scaled chrysophytes. Limnology and Oceanography, 38:14801492.Google Scholar
Siver, P. A. 1995. The distribution of chrysophytes along environmental gradients: their use as biological indicators, p. 232268. In Sandgren, C. D. et al. (eds.), Chrysophyte Algae: Ecology, Phylogeny and Development. Cambridge University Press, Cambridge.Google Scholar
Siver, P. A., and Hamer, J. S. 1989. Multivariate statistical analysis of the factors controlling the distribution of scaled chrysophytes. Limnology and Oceanography, 34:368381.Google Scholar
Siver, P. A., and Hamer, J. S. 1992. Seasonal periodicity of Chrysophyceae and Synurophyceae in a small New England lake: implications for paleolimnological research. Journal of Phycology, 28:186198.Google Scholar
Siver, P. A., and Skogstad, A. 1988. Morphological variation and ecology of Mallomonas crassisquama (Chrysophyceae). Nordic Journal of Botany, 7:99107.CrossRefGoogle Scholar
Siver, P. A., and Smol, J. P. 1993. The use of scaled chrysophytes in long term monitoring programs for the detection of changes in lakewater acidity. Water, Air, and Soil Pollution, 71:357376.Google Scholar
Smith, M. A., and White, M. J. 1985. Observations on lakes near Mount St. Helens: phytoplankton. Archiv für Hydrobiologie, 104:345362.Google Scholar
Smol, J. P. 1980. Fossil synuracean (Chrysophyceae) scales in lake sediments: a new group of paleoindicators. Canadian Journal of Botany, 58:458465.Google Scholar
Smol, J. P. 1983. Paleophycology of a high arctic lake near Cape Herschel, Ellesmere Island. Canadian Journal of Botany, 61:21952204.Google Scholar
Smol, J. P. 1985. The ratio of diatom frustules to chrysophycean statospores: a useful paleolimnological index. Hydrobiologia, 123:199208.Google Scholar
Smol, J. P. 1987. Methods in Quaternary ecology: freshwater algae. Geoscience Canada, 14:208217.Google Scholar
Smol, J. P. 1988a. Chrysophycean microfossils in paleolimnological studies. Palaeogeography, Palaeoclimatology, Palaeoecology, 62:287297.Google Scholar
Smol, J. P. 1988b. Paleoclimate proxy data from freshwater arctic diatoms. Internationale Vereinigung für Theoretische und Angewandte Limnologie Verhandlungen, 23:837844.Google Scholar
Smol, J. P. 1990. Diatoms and chrysophytes—a useful combination in palaeolimnological studies: report of a workshop and a working bibliography, 585-592 p. In Simola, H. (ed.), Proceedings of the Tenth International Diatom Symposium. Koeltz Scientific Books, Koenigstein, Germany.Google Scholar
Smol, J. P. 1995. Application of chrysophytes to problems in paleoecology. In Chrysophyte algae: ecology, phylogeny and development, p. 303329. In Sandgren, C. D. et al. (eds.), Chrysophyte Algae: Ecology, Phylogeny and Development. Cambridge University Press, Cambridge.Google Scholar
Smol, J. P., and Boucherle, M. M. 1985. Postglacial changes in algal and cladoceran assemblages in Little Round Lake, Ontario. Archiv für Hydrobiologie, 103:2549.Google Scholar
Smol, J. P., Brown, S. R., and McNeely, R. N. 1983. Cultural disturbances and trophic history of a small meromictic lake from central Canada. Hydrobiologia, 103:125130.Google Scholar
Smol, J. P., Charles, D. F., and Whitehead, D. R. 1984b. Mallomonadacean microfossils provide evidence of recent lake acidification. Nature, 307:628630.Google Scholar
Smol, J. P., Charles, D. F., and Whitehead, D. R. 1984a. Mallomonadacean (Chrysophyceae) assemblages and their relationships with limnological characteristics in 38 Adirondack (N.Y.) lakes. Canadian Journal of Botany, 62:911923.Google Scholar
Srivastava, S. K., and Binda, P. L. 1984. Siliceous and silicified microfossils from the Maastrichtian Battle Formation of southern Alberta, Canada. Paleobiologie Continentale, 14:124.Google Scholar
Stoermer, E. F., Kociolek, J. P., Schelske, C. L., and Andersen, N. A. 1991. Siliceous microfossil succession in the recent history of Green Bay, Lake Michigan. Journal of Paleolimnology, 6:123140.Google Scholar
Takahashi, E., 1978. Electron Microscopical Studies of the Synuraceae (Chrysophyceae) in Japan. Taxonomy and Ecology. Tokai University Press, Tokyo, 194 p.Google Scholar
Takahashi, E., 1981. Floristic study of ice algae in the sea ice of a lagoon, Lake Saroma, Hokkaido, Japan. Memoirs of National Institute of Polar Research. Series E. Biology and Medical Science, 34:4956.Google Scholar
Takahashi, E., 1987. Loricate and scale-bearing protists from Lützhow437–Holm Bay, Antarctica II. Four marine species of Paraphysomonas (Chrysophyceae) including two new species from the fast-ice covered coastal area. Japanese Journal of Phycology, 35:155166.Google Scholar
Takahashi, E., Watanabe, K., and Satoh, H. 1986. Siliceous cysts from Kita-no-seto Strait, north of Syowa Station, Antarctica. Memoirs of National Institute of Polar Research, Special Issue, 40:8495.Google Scholar
Ter Braak, C. J. F. 1987. Unimodal models to relate species to environment. Unpublished Ph.D. dissertation, University of Wageningen, Wageningen, The Netherlands, 152 p.Google Scholar
Takahashi, E., 1988. CANOCO: a FORTRAN Program for Canonical Community Ordination by [Partial] [Detrended] [Canonical] Correspondence Analysis, Principal Components Analysis and Redundancy Analysis, Version 2.1. In Institute of Applied Computer Science, Statistical Department Wageningen, Technical Report LWA-88-02, Wageningen, The Netherlands, 95 p.Google Scholar
Ter Braak, C. J. F. 1994. Canonical community ordination. Part I: basic theory and linear methods. Ecoscience, 1:127140.Google Scholar
Ter Braak, C. J. F., and Barendregt, L. G. 1986. Weighted averaging, logistic regression and the Gaussian response model. Vegetatio, 65:311.Google Scholar
Ter Braak, C. J. F., and Juggins, S. 1993. Weighted averaging partial least squares regression (WA-PLS): an improved method for reconstructing environmental variables from species assemblages. Hydrobiologia, 269/270:485502.Google Scholar
Ter Braak, C. J. F., and Van Dam, H. 1989. Inferring pH from diatoms: a comparison of old and new calibration methods. Hydrobiologia, 178:209223.Google Scholar
Tynan, E. J. 1960. The Archaeomonadaceae of the Calvert Formation (Miocene) of Maryland. Micropaleontology, 6:3339.Google Scholar
Uutala, A. J. 1986. Paleolimnological assessment of the effects of lake acidification on Chironomidae (Diptera) assemblages in the Adirondack region of New York. Unpublished Ph.D. dissertation, State University of New York, College of Environmental Science and Forestry, Syracuse, 155 p.Google Scholar
Van Landingham, S. L. 1964. Chrysophyta cysts from the Yakima Basalt (Miocene) in south-central Washington. Journal of Paleontology, 38:729739.Google Scholar
Walker, I. R., Reavie, E. D., Palmer, S., and Nordin, R. N. 1993. A palaeoenvironmental assessment of human impact on Wood Lake, Okanagan Valley, British Columbia, Canada. Quaternary International, 20:5170.Google Scholar
Webb, J. L. 1992. Changes in chrysophyte assemblages associated with the marine/lacustrine transition in a midarctic coastal lake. , Queen's University, Kingston, Ontario, 60 p.Google Scholar
Wee, J. L. 1982. Studies on the Synuraceae (Chrysophyceae) of Iowa. Bibliotheca Phycologia, 62:1183.Google Scholar
Whitehead, D. R., Charles, D. F., Jackson, S. T., Smol, J. P., and Engstrom, D. R. 1989. The developmental history of Adirondack (N.Y.) lakes. Journal of Paleolimnology, 2:185206.Google Scholar
Wilson, S. E., Cumming, B. F., and Smol, J. P. 1994. Diatom-salinity relationships in 111 lakes from the Interior Plateau of British Columbia, Canada: the development of diatom-based models for paleosalinity and paleoclimatic reconstructions. Journal of Paleolimnology, 12:197221.Google Scholar
Wright, H. E. Jr. 1976. The dynamic nature of Holocene vegetation: a problem in paleoclimatology, biogeography, and stratigraphic nomenclature. Quaternary Research, 6:581596.Google Scholar
Zeeb, B. A., Christie, C. E., Smol, J. P., Findlay, D. L., Kling, H. J., and Birks, H. J. B. 1994. Responses of diatom and chrysophyte assemblages in Lake 227 to experimental eutrophication. Canadian Journal of Fisheries and Aquatic Sciences, 51:23002311.Google Scholar
Zeeb, B. A., Duff, K. E., and Smol, J. P. 1990. Morphological descriptions and stratigraphic profiles of chrysophycean stomatocysts from the recent sediments of Little Round Lake, Ontario. Nova Hedwigia, 51:361380.Google Scholar
Zeeb, B. A., and Smol, J. P. 1991. Paleolimnological investigation of the effects of road salt seepage on scaled chrysophytes in Fonda Lake, Michigan. Journal of Paleolimnology, 5:263266.Google Scholar
Zeeb, B. A., and Smol, J. P. 1993a. Postglacial chrysophycean cyst record from Elk Lake, Minnesota, p. 239249. In Bradbury, J. P. and Dean, W. E. (eds.), Elk Lake, Minnesota: Evidence for Rapid Climate Change in the North-Central United States. Geological Society of America, Special Paper 276.Google Scholar
Zeeb, B. A., and Smol, J. P. 1993b. Chrysophycean stomatocyst flora from Elk Lake, Clearwater County, Minnesota. Canadian Journal of Botany, 71:737756.Google Scholar
Zeeb, B. A., and Smol, J. P. In press. A weighted-averaging regression and calibration model for inferring lakewater salinity using chrysophycean stomatocysts from lakes in western Canada. International Journal of Salt Lake Research.Google Scholar