Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-09T21:53:37.822Z Has data issue: false hasContentIssue false

Paleobiology of the Arthropod Cuticle

Published online by Cambridge University Press:  17 July 2017

Roy E. Plotnick*
Affiliation:
Department of Geological Sciences, University of Illinois at Chicago, Box 4348, Chicago, Illinois 60680

Extract

To a large extent, a chitinous external cuticle is the distinguishing feature of arthropods (Barnes, 1980). Many of the other features considered characteristic of arthropods, such as growth by molting or the jointed appendages, are either directly or indirectly tied to the possession of the cuticle (Cisne, 1974; Neville, 1975; Grasshoff, 1981).

Type
Research Article
Copyright
Copyright © 1990 Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allison, P.A. 1986. Soft-bodied animals in the fossil record: the role of decay in fragmentation during transport. Geology, 14:979981.Google Scholar
Allison, P.A. 1988. The role of anoxia in the decay and mineralization of proteinaceous macrofossils. Paleobiology, 14:139154.Google Scholar
Andersen, S.O. 1979. Biochemistry of insect cuticle. Annual Reviews of Entomology, 24:2961 Google Scholar
Barnes, H., Klepal, W., and Mitchell, B.D. 1976. The organic and inorganic composition of some cirripede shells. Journal of Experimental Marine Biology and Ecology, 21:119127.CrossRefGoogle Scholar
Barnes, R.D. 1980. Invertebrate Zoology. 4th ed. Saunders College, Philadephia, 1089 p.Google Scholar
Benson, R.H. 1981. Form, function, and architecture of ostracode shells. Annual Review of Earth and Planetary Sciences, 9:5980.Google Scholar
Bergström, J. 1980. Morphology and systematics of early arthropods. Abhandlungen Naturwissenschaften Vereins Hamburg, 23:742.Google Scholar
Bishop, G.A. 1986. Taphonomy of the North American decapods. Journal of Crustacean Biology, 6:326355.Google Scholar
Bock, W.J. and Von Wahlert, G. 1965. Adaptation and the form-function complex. Evolution, 11:269299.CrossRefGoogle Scholar
Boudreaux, H.B. 1979. Arthropod Phylogeny. John Wiley and Sons, New York, 320 p.Google Scholar
Brannon, A.C. and Rao, K.R. 1979. Barium, strontium, and calcium levels in the exoskeleton, hepatopancreas, and abdominal muscle of the grass shrimp, Palaemonetes pugio: relation to molting and exposure to barite. Comparative Biochemistry and Physiology, 63A:261274.CrossRefGoogle Scholar
Briggs, D.E. and Fortey, R.A. 1982. The cuticle of the aglaspidid arthropods, a red-herring in the early history of the vertebrates. Lethaia, 15:2529.Google Scholar
Briggs, D.E. and Fortey, R.A. 1989. The early radiation and relationships of the major arthropod groups. Science, 246:241243.CrossRefGoogle ScholarPubMed
Brown, C.H. 1975. Structural Materials in Animals. Halsted Press, New York, 448 p.Google Scholar
Brumioul, D. and Voss-Foucart, M.F. 1977. Substances organiques dans les carapaces de crutaces fossiles. Comparative Biochemistry and Physiology, 57B:171175.Google Scholar
Bubel, A., Stephens, R.M., Fenn, R.H., and Fieth, P. 1983. An electron microscope, X-ray diffraction and amino acid analysis of the opercular filament cuticle, calcareous opercular plate and habitation tube of Pomotoceros lamarkii quatrefages (Polychaeta: Serpulidae). Comparative Biochemistry and Physiology, 74B:837850.Google Scholar
Carlson, S. 1990. Vertebrate dental structures. p. 235260. In Carter, J.G. (ed.), Skeletal Biomineralization: Patterns, Processes, and Evolutionary Trends. American Geophysical Union, Short Course in Geology, Volume 5, part II.Google Scholar
Carter, J. 1990. (ed.), Skeletal Biomineralization: Patterns, Processes, and Evolutionary Trends. American Geophysical Union, Short Course in Geology, Volume 5, part II, 399 p.Google Scholar
Chave, K.E. 1954. Aspects of the biogeochemsitry of magnesium. 1. calcareous marine organisms. Journal of Geology, 62:266283.Google Scholar
Cisne, J. 1974. Trilobites and the origin of arthropods. Science, 186:1318.Google Scholar
Clarke, F.W. and Wheeler, W.C. 1922. The inorganic constituents of marine invertebrates. U.S. Geological Survey Professional Paper, 124:162.Google Scholar
Cloudsley-Thompson, J.L. 1988. Evolution and Adaptation of Terrestrial Arthropods. Springer-Verlag, Berlin, 141 p.Google Scholar
Currey, J.D. 1990. Biomechanics of mineralized skeletons, p. 1125. In Carter, J.G. (ed.) Skeletal Biomineralization: Patterns, Processes, and Evolutionary Trends. American Geophysical Union, Short Course in Geology, Volume 5, part II.Google Scholar
Currey, J.D., Nash, A., and Bonfield, W. 1983. Calcified cuticle in the stomatopod smashing limb. Journal of Materials Science, 17:19391944.Google Scholar
Cutler, B. 1980. Arthropod cuticle features and arthropod monophyly. Experentia, 36:953.Google Scholar
Dalingwater, J.E. 1973a. The cuticle of a eurypterid. Lethaia, 6:179186.CrossRefGoogle Scholar
Dalingwater, J.E. 1973b. Trilobite cuticle microstructure and composition. Palaeontology, 16:827839.Google Scholar
Dalingwater, J.E. 1985. Biomechanical approaches to eurypterid cuticles and chelicerate exoskeletons. Transaction of the Royal Society of Edinburgh, 76:359364.Google Scholar
Dalingwater, J.E., and Mutvei, H. 1990. Arthropod exoskeletons, p. 8396. In Carter, J.G. (ed.), Skeletal Biomineralization: Patterns, Processes, and Evolutionary Trends. American Geophysical Union, Short Course in Geology, Volume 5, part II.Google Scholar
Dalingwater, J.E., and Waterston, C.D. 1983. An arthropod fragment from the Scottish Namurian amd its remarkably preserved cuticular ultrastructure. Special Papers in Palaentology, 30:221228.Google Scholar
Dendinger, J.E. and Alterman, A. 1983. Mechanical properties in relation to chemical constituents of postmolt cuticle of the blue crab, Callinectes sapidus. Comparative Biochemistry and Physiology, 75A:421424.Google Scholar
Dzik, J. and Lendzion, K. 1988. The oldest arthropods of the East European Platform. Lethaia, 21:2938.Google Scholar
Ejike, C. and Dransfield, R.D. 1979. Studies on the inorganic constituents of the intermoult cuticle of the crab, Sudanonautes africanus (Milne-Edwards) Rev. Zool. Afr. 93:3652.Google Scholar
Feldmann, R.M. and Tshudy, D. 1987. Ultrastructure in cuticle from Hoploparia stokesi (Decapoda: Nephropidae) from the Lopez de Bertodana Formation (Late Cretaceous-Paleocene) of Seymour Island, Antarctica. Journal of Paleontology, 61:11941203.Google Scholar
Gibbs, P.E. and Bryan, G.W. 1972. A study of the strontium, magnesium, and calcium in the environment and exoskeleton of decapod crustaceas, with special reference to Uca burgersi on Barbuda, West Indies. Journal of Experimental Marine Biology and Ecology., 9:97110.Google Scholar
Giraud-Guille, M.M. and Bouligand, Y. 1986. Chitin-protein molecular organization in arthropods, p. 2935. In Muzzarelli, R., Jeunieux, C., and Gooday, G.W. (eds.), Chitin in Nature and Technology. Plenum Press, New York.Google Scholar
Gnatzy, W. and Romer, F. 1984. Cuticle: formation, moulting and control, p. 638684. In Bereiter-Hahn, J., Matlotsky, A.G., and Richards, K.S. (eds.), Biology of the Integument 1. Springer-Verlag, Berlin.Google Scholar
Graf, F. 1978. Les sources de calcium pour les crustacés venant de muer. Archives de Zoologie Expérimentale et Générale, 119: 143161.Google Scholar
Grasshoff, M. 1981. Arthropodosierung als biomechanischer Prozess und die Entstehung der Trilobiten-Konstruktion. Paläontologische Zeitschrift, 55:219235.Google Scholar
Greenaway, P. 1985. Calcium balance and moulting in the Crustacea. Biological Reviews, 60:425454.CrossRefGoogle Scholar
Hackman, R.H. 1984. Cuticle: biochemistry, p. 583610. In Bereiter-Hahn, J., Matlotsky, A.G., and Richards, K. S. (eds.), Biology of the Integument 1. Springer-Verlag, Berlin.Google Scholar
Hackman, R.H., and Goldberg, M. 1975. Peripatus: its affinities and cuticle. Science, 190:582583.Google Scholar
Hackman, R.H., and Goldberg, M. 1976. Comparative chemistry of arthropod cuticular proteins. Comparative Biochemistry and Physiology, 55B:201206.Google Scholar
Hepburn, H.R. and Chandler, H.D. 1980. Materials testing of arthropod cuticle preparations, p. 144. In Miller, T.A. (ed.), Cuticle Techniques in Arthropods. Springer-Verlag, New York.Google Scholar
Hepburn, H.R., and Joffe, I. 1974a. Locust solid cuticle — a time sequence of mechanical properties. Journal of Insect Physiology, 20:497506.Google Scholar
Hepburn, H.R., and Joffe, I. 1974b. Hardening of locust sclerites. Journal of Insect Physiology, 20:631635.Google Scholar
Hepburn, H.R., Joffe, I., Green, N., and Nelson, K. J. 1975. Mechanical properties of a crab shell. Comparative Biochemistry and Physiology, 50A:551554.Google Scholar
Hillerton, J.E. 1984. Cuticle: mechanical properties, p. 626637. In Bereiter-Hahn, J., Matlotsky, A.G., and Richards, K.S. (eds.), Biology of the Integument 1. Springer-Verlag, Berlin.Google Scholar
Huner, J.V. and Lindquist, O.S. 1985. Exoskeletal mineralization in astacid and cambarid crayfishes (Decapoda, Crustacea). Comparative Biochemistry and Physiology, 80A:515521.Google Scholar
Joffe, I., Hepburn, H.R., and Anderson, S.O. 1975. On the mechanical properties of Limulus solid cuticle. Journal of Comparative Physiology, 101:147160.Google Scholar
Joffe, I., Hepburn, H.R., Nelson, K.J., and Green, N. 1975. Mechanical properties of a crustacean exoskeleton. Comparative Biochemistry and Physiology 50A:545549.CrossRefGoogle Scholar
Kannupandi, T. 1976. Cuticular adaptations in two parasitic copepods in relation to their modes of life. Journal of Experimental Marine Biology and Ecology, 22:235248.CrossRefGoogle Scholar
Locke, M. 1984. Arthropoda: epidermal cells, p. 502522. In Bereiter-Hahn, J., Matlotsky, A.G., and Richards, K.S. (eds.), Biology of the Integument 1. Springer-Verlag, Berlin.CrossRefGoogle Scholar
Lowenstam, H.A. 1972. Phosphatic hard tissues of marine invertebrates: their nature and mechanical functions, and some fossil implications. Chemical Geology, 9:153166.Google Scholar
Lowenstam, H. and Weiner, S. 1989. On Biomineralization. Oxford University Press, New York, 324 p.Google Scholar
Manton, S.M. 1977. The Arthropoda: Habits, Functional Morphology, and Evolution. Clarendon Press, Oxford, 527 p.Google Scholar
McAllister, J.E. and Brand, U. 1989. Primary and diagenetic microstructures in trilobites. Lethaia, 22:101111.Google Scholar
Mills, B.J. and Lake, P.S. 1976. The amount and distribution of calcium in the exoskeleton of intermoult crayfish Parastacoides tasmanicus (Erichson) and Astacopsis fluviatilis (Gray). Comparative Biochemistry and Physiology, 53A:355360.Google Scholar
Müller, K.J. 1979. Phosphatocopine ostracods with preserved appendages from the Upper Cambrian of Sweden. Lethaia, 12:128.Google Scholar
Mutvei, H. 1977. SEM studies on arthropod exoskeletons: 2. Horseshoe crab Limulus polyphemus (L.) in comparison with extinct eurypterids and recent scorpions. Zoologica Scripta, 6:203213.Google Scholar
Mutvei, H. 1981. Exoskeletal structure in the Ordovician trilobite Flexicalymene . Lethaia, 14:225234.Google Scholar
Muzzarelli, R., Jeunieux, C., and Gooday, G.W. 1986. Chitin in Nature and Technology. Plenum Press, New York, 583 p.Google Scholar
Neville, A.C. 1975. Biology of the Arthropod Cuticle. Springer-Verlag, New York, 448 p.Google Scholar
Neville, A.C. 1984. Cuticle: organization, p. 611625. In Bereiter-Hahn, J., Matlotsky, A.G., and Richards, K.S. (eds.), Biology of the Integument 1. Springer-Verlag, Berlin.Google Scholar
Neville, A.C. and Berg, C.W. 1971. Cuticle ultrastructure of a Jurassic crustacean (Eryma stricklandi). Palaeontology, 14:201205.Google Scholar
Okafor, N. 1966. The ecology on, and the decomposition of, insect wings in the soil. Plant and Soil, 25:211237.Google Scholar
Plotnick, R. 1986. Taphonomy of a modern shrimp: implications for the arthropod fossil record. Palaios, 1:286293.Google Scholar
Plotnick, R.E., Baumiller, T., and Wetmore, K.L. 1988. Fossilization potential of the mud crab Panopeus (Brachyura: Xanthidae) and temporal variability ion crustacean taphonomy. Palaeogeography, Palaeoclimatology, Palaeoecology, 63:2743.Google Scholar
Poulicek, M., Goffinet, G., Voss-Foucart, M.F., Bussers, J.C., Jaspar-Versali, M.F. and Toussaint, C. 1986. Chitin degradation in natural environment (mollusk shells and crab carapaces), p. 547550. In Muzzarelli, R., Jeunieux, C., and Gooday, G.W. (eds.), Chitin in Nature and Technology. Plenum Press, New York.Google Scholar
Prange, H.D. 1977. The scaling and mechanics of arthropod exoskeletons, p. 169183. In Pedley, T.J. (ed.), Scaling Effects in Animal Locomotion. Academic Press, London.Google Scholar
Richards, K.S. 1984. Annelida: Cuticle, p. 310322. In Bereiter-Hahn, J., Matlotsky, A.G., and Richards, K.S. (eds.), Biology of the Integument 1. Springer-Verlag, Berlin.CrossRefGoogle Scholar
Roer, R. and Dillaman, R. 1984. The structure and calcification of the crustacean cuticle. American Zoologist, 24:893909.Google Scholar
Rolfe, W.D.I. 1962. The cuticle of some Middle Silurian ceratiocaridid Crustacea from Scotland. Palaeontology, 5:3051.Google Scholar
Rosenfeld, A. 1979. Structure and secretion of the carapace in some living ostracodes. Lethaia, 12:281360.Google Scholar
Rudall, K.M. 1955. The distribution of collagen and chitin, p. 4971. In Brown, R. and Danielli, J.F. (eds.), Fibrous Proteins and Their Biological Significance. Symposia of the Society for Experimental Biology, Number IX. Academic Press, New York.Google Scholar
Schram, F.R. 1986. Crustacea. Oxford University Press, New York, 606 p.Google Scholar
Schroeder, P.C. 1984. Annelida: Chaetae, p. 297309. In Bereiter-Hahn, J., Matlotsky, A.G., and Richards, K.S. (eds.), Biology of the Integument 1. Springer-Verlag, Berlin.Google Scholar
Seastadt, T.R., and Tate, C.M. 1981. Decomposition rates and nutrient contents of arthropod remains in forest litter. Ecology, 62:1319.CrossRefGoogle Scholar
Simkiss, K., and Wilbur, K.M. 1989. Biomineralization. Academic Press, San Diego, 337 p.Google Scholar
Sohn, I.G. and Kornicker, L.S. 1988. Ultrastructure of myodocopid shells (Ostracoda), p. 243257. In Hanai, T., Ikeya, N., and Ishizaki, K. (eds.), Evolutionary Biology of Ostracoda. Elsevier, Amsterdam.Google Scholar
Speyer, S. 1987. Comparative taphonomy and palaeoecology of trilobite lagerstätten. Alcheringia 11:205232.Google Scholar
Storch, V. 1984. Onychophora, p. 703708. In Bereiter-Hahn, J., Matlotsky, A.G., and Richards, K.S. (eds.), Biology of the Integument 1. Springer-Verlag, Berlin.Google Scholar
Tiegler, D.J., and Towe, K.M. 1975. Microstructure and composition of the trilobite exoskeleton. Fossils and Strata, 4:137149.Google Scholar
Vallabhan, D.L. 1981. Comparative study of the calcium content of the cuticle of Sphaeroma terebrans Bate and Cirolana fluviatalis Stebbing and its significance (Isopoda-Crustacea). Proceedings Indian Academy of Science (Animal Science), 90:593600.Google Scholar
Vermeij, G. 1987. Evolution and Escalation. Princeton University Press, Princeton, N.J., 527 p.Google Scholar
Vigh, D.A., and Dendinger, J.E. 1982. Temporal relationships of postmolt deposition of calcium, magnesium, chitin and protein in the cuticle of the Atlantic blue crab, Callinectes sapidus Rathbun. Comparative Biochemistry and Physiology, 72A:365369.Google Scholar
Wainwright, S.A., Biggs, W.D., Currey, J.D., and Gosline, J.M. 1976. Mechanical Design in Organisms. John Wiley & Sons, New York, 423 p.Google Scholar
Watabe, N. 1990. Calcium phosphate structures in invertebrates and protozoans, p. 3544. In Carter, J.G. (ed.), Skeletal Biomineralization: Patterns, Processes, and Evolutionary Trends. American Geophysical Union, Short Course in Geology, Volume 5, part II.Google Scholar
Weygoldt, P. 1986. Arthropod-interrelationships – the phylogenetic-systematic approach. Zeitshcrift Zool. Syst. Evolut.-forsch., 24:1935.Google Scholar
Whittington, H.B. 1985. Tegopelte gigas, a second soft-bodied trilobite from the Burgess Shale, Middle Cambrian, British Columbia. Journal of Paleontology, 59:12511274.Google Scholar
Wilmot, N.V. and Fallick, A.E. 1989. Original mineralogy of trilobite exoskeletons. Palaeontology, 32:297304.Google Scholar