Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-09T22:15:32.728Z Has data issue: false hasContentIssue false

Mass Extinction in the Cambrian Trilobite Faunas of North America

Published online by Cambridge University Press:  17 July 2017

Stephen R. Westrop*
Affiliation:
Department of Geological Sciences, Brock University, St. Catharines, Ontario L2S 3A1, Canada

Extract

Sepkoski (1981a,b, 1988) has characterized the Cambrian fauna as unique, both in terms of taxonomic composition and in environmental distribution of taxa. Compared with the rest of the Phanerozoic, the frequency of mass extinction in the Cambrian must also rank as a distinctive feature which had a profound impact on macroevolutionary patterns. Three well-documented extinctions occurred in the Upper Cambrian of North America (Figure 1; Palmer, 1979; Westrop and Ludvigsen, 1987) and are best expressed in the trilobite faunas. Possible older extinctions may be present at the top of the Olenellus Zone and near the base of the Bolaspidella Zone (e.g., see Palmer, 1982) but more data are required.

Type
Research Article
Copyright
Copyright © 1990 Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bambach, R.K. 1977. Species richness in marine benthic habitats through the Phanerozoic. Paleobiology, 3:152157.CrossRefGoogle Scholar
Foote, M. 1988. Survivorship analysis of Cambrian and Ordovician trilobites. Paleobiology, 14:258271.CrossRefGoogle Scholar
Fortey, R.A. 1989. There are extinctions and extinctions: examples from the Lower Paleozoic. Philosophical Transactions of the Royal Society of London, B, 325:327355.Google Scholar
Hallam, A. 1963. Eustatic control of major cyclic changes in Jurassic sedimentation. Geological Magazine, 100:444450.CrossRefGoogle Scholar
Hallam, A. 1987. Radiations and extinctions in relation to environmental change in the marine Jurassic of northwest Europe. Paleobiology, 13, 152168.CrossRefGoogle Scholar
Hallam, A. 1989. The case for sea-level change as a dominant causal factor in mass extinction of marine invertebrates. Philosophical Transactions of the Royal Society of London, B, 325:437455.Google Scholar
Hancock, J.M. 1977. The historic development of concepts of biostratigraphic correlation, p. 322. In Kauffman, E.G. and Hazel, J.E. (eds.), Concepts and Methods of Biostratigraphy. Dowden, Hutchison and Ross, Stroudsburg, Pennsylvania.Google Scholar
Jablonski, D. 1986a. Background and mass extinctions: the alternation of macroevolutionary regimes. Science 231: 129133.CrossRefGoogle ScholarPubMed
Jablonski, D. 1986b. Causes and consequences of mass extinction: a comparative approach, p. 183229. In Elliott, D.K. (ed.), Dynamics of Extinction. Wiley, New York.Google Scholar
James, N.P. 1984. Facies models 10. Shallowing upward sequences in carbonates, p. 213228. In Walker, R.G. (ed.), Facies Models. Geoscience Canada, Reprint Series 1 (2nd edition).Google Scholar
Ludvigsen, R. 1982. Upper Cambrian and Lower Ordovician trilobite biostratigraphy of the Rabbitkettle Formation, western District of Mackenzie. Life Sciences Contributions, Royal Ontario Museum 134, 188 p.Google Scholar
Ludvigsen, R., Pratt, B.R., and Westrop, S.R. 1988. The myth of an eustatic sea level drop near the base of the Ibexian Series. New York State Museum Bulletin 462:6570.Google Scholar
Ludvigsen, R., Pratt, B.R., and Westrop, S.R. 1983. Trilobite biofacies of the Cambrian-Ordovician boundary interval in northern North America. Alcheringa. 7:301319 CrossRefGoogle Scholar
Ludvigsen, R., Pratt, B.R., and Westrop, S.R. 1985a. Three new Upper Cambrian stages for North America. Geology 13:139143.2.0.CO;2>CrossRefGoogle Scholar
Ludvigsen, R., Pratt, B.R., and Westrop, S.R. 1985b. Reply to comments by Robison et al. Geology, 13:688689.Google Scholar
Ludvigsen, R., Pratt, B.R., and Kindle, C.H. 1989. Sunwaptan (Upper Cambrian) trilobites of the Cow Head Group, western Newfoundland, Canada. Palaeontographica Canadiana, 6, 175 p.Google Scholar
Miller, J.F. 1984. Cambrian and earliest Ordovician conodont evolution, biofacies and provincialism. Geological Society of America Special Paper, 196:4368.CrossRefGoogle Scholar
Miller, J.F., Taylor, M.E., Stitt, J.H., Ethington, R.L., and Taylor, J.F. 1982. Potential Cambrian-Ordovician boundary stratotype sections in the western United States. In Bassett, M.G. and Dean, W.T. (eds.), The Cambrian-Ordovician boundary: sections, fossil distributions and correlations. National Museum of Wales Geological Series, 3:155180.Google Scholar
Orth, C.J., Knight, J.D., Quintana, L.R., Gilmore, J.S., and Palmer, A.R. 1984. A search for Ir anomalies at two Late Cambrian biomere boundaries in western Utah. Science, 233:163165.CrossRefGoogle Scholar
Palmer, A.R. 1965a. Biomere — a new kind of biostratigraphic unit. Journal of Paleontology, 39:149153.Google Scholar
Palmer, A.R. 1965b. Trilobites of the Late Cambrian Pterocephalid Biomere in the Great Basin. United States Geological Survey Professional Paper 493, 105 p.Google Scholar
Palmer, A.R. 1979. Biomere boundaries revisited. Alcheringa, 3: 3341.CrossRefGoogle Scholar
Palmer, A.R. 1982. Biomere boundaries: a possible test for extraterrestrial perturbation of the biosphere. In Silver, L.T. and Schultz, P.H. (eds.), Geological implications of impacts of large asteroids and comets on earth. Geological Society of America Special Paper 190:469476.CrossRefGoogle Scholar
Palmer, A.R. 1984. The biomere problem: evolution of an idea. Journal of Paleontology, 58:599611.Google Scholar
Robison, R.A., Rowell, A.J., Fritz, W.H., Kurtz, V.E., Miller, J.E., Norford, B.S., Palmer, A.R., Repetski, J.E., Stitt, J.H., Taylor, J.F., and Taylor, M.E. 1985. Comment on “Three new Upper Cambrian stages for North America”. Geology, 13:666667.2.0.CO;2>CrossRefGoogle Scholar
Schopf, T.J.M. 1979. The role of biogeographic provinces in regulating marine faunal diversity over geologic time, p. 449457. In Gray, J. and Boucot, A.J. (eds.), Historical Biogeography, Plate Tectonics and the Changing Environment. Oregon State University Press, Corvallis, Oregon.Google Scholar
Sepkoski, J.J. Jr. 1981a. The uniqueness of the Cambrian fauna. In Taylor, M.E. (ed.), Short Papers for the Second International Symposium on the Cambrian System. United States Geological Survey Open File Report, 81-743:203207.Google Scholar
Sepkoski, J.J. Jr. 1981b. A factor analytic description of the Phanerozoic marine fossil record. Paleobiology, 7:3653.CrossRefGoogle Scholar
Sepkoski, J.J. Jr. 1988. Alpha, beta or gamma: where does all the diversity go? Paleobiology, 14:221234.CrossRefGoogle ScholarPubMed
Stanley, S. M. 1979. Macroevolution: Pattern and Process. W.H. Freeman and Co., San Francisco, 332 p.Google Scholar
Stanley, S. M. 1984. Marine mass extinctions: a dominant role for temperature, p. 69117. In Nitecki, M.H. (ed.), Extinctions. University of Chicago Press, Chicago.Google Scholar
Stitt, J.H. 1971. Repeating evolutionary pattern in Late Cambrian trilobite biomeres. Journal of Paleontology 45:178181.Google Scholar
Stitt, J.H. 1975. Adaptive radiation, trilobite paleoecology and extinction, Ptychaspid Biomere, Late Cambrian of Oklahoma. Fossils and Strata 4:381390.CrossRefGoogle Scholar
Stitt, J.H. 1977. Late Cambrian and earliest Ordovician trilobites, Wichita Mountains area, Oklahoma. Oklahoma Geological Survey Bulletin 124, 79 p.Google Scholar
Taylor, M.E. 1977. Late Cambrian of western North America: trilobite biofacies, environmental significance and biostratigraphic implications, p. 297345. In Kauffman, E.G. and Hazel, J.E. (eds.), Concepts and Methods of Biostratigraphy. Dowden, Hutchison and Ross, Stroudsburg, Pennsylvania.Google Scholar
Valentine, J.W. 1973. Evolutionary Paleoecology of the Marine Biosphere. Prentice-Hall Inc, Englewood Cliffs, New Jersey, 511 p.Google Scholar
Vrba, E.S. and Gould, S.J. 1986. The hierarchical expansion of sorting and selection: sorting and selection cannot be equated. Paleobiology 12:217228.CrossRefGoogle Scholar
Westrop, S.R. 1986. Trilobites of the Upper Cambrian Sunwaptan Stage, southern Canadian Rocky Mountains, Alberta. Palaeontographica Canadiana 3, 179 p.Google Scholar
Westrop, S.R. 1988. Trilobite diversity patterns in an Upper Cambrian stage. Paleobiology, 14:401409.CrossRefGoogle Scholar
Westrop, S.R. 1989a. Macroevolutionary implications of mass extinctions — evidence from an Upper Cambrian stage boundary. Paleobiology 15:4652.CrossRefGoogle Scholar
Westrop, S.R. 1989b. Trilobite mass extinction near the Cambrian-Ordovician boundary in North America, p. 89103. In Donovan, S.K. (ed.), Mass extinctions. Processes and the evidence. Columbia University Press, New York.Google Scholar
Westrop, S.R. 1989c. Facies anatomy of an Upper Cambrian Grand Cycle: Bison Creek and Mistaya formations, southern Alberta. Canadian Journal of Earth Sciences, 26:22922304 CrossRefGoogle Scholar
Westrop, S.R., and Ludvigsen, R. 1987. Biogeographic control of trilobite mass extinction at an Upper Cambrian “biomere” boundary. Paleobiology 13:8499.CrossRefGoogle Scholar