Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-09T21:52:15.249Z Has data issue: false hasContentIssue false

Fossil Continental Diatoms: Paleolimnology, Evolution, and Biochronology

Published online by Cambridge University Press:  17 July 2017

J. P. Bradbury
Affiliation:
U.S. Geological Survey, MS 919, Box 25046, Denver Federal Center, Denver, Colorado 80225-0046
W. N. Krebs
Affiliation:
Amoco Production Company, 501 Westlake Park Boulevard, Houston, Texas 77079-2696

Extract

Diatoms are golden brown algae (class Bacillariophyceae) whose cellular contents are enclosed between two valves or shells of silica. They are classified into groups with radial symmetry (centric diatoms) and axial symmetry (pennate diatoms). The latter are subdivided as raphid and araphid diatoms according to the presence or absence of raphes (slit-like structures) that allow diatoms to move along firm surfaces. Many centric and some araphid diatoms are planktonic, maintained by turbulence in the limnetic region of a lake, whereas raphid diatoms live on the lake bottom or are attached to objects in the illuminated zone.

Type
Research Article
Copyright
Copyright © 1995 Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, N. J., Korsman, T., and Renberg, I. 1994. Spatial heterogeneity of diatom stratigraphy in varved and non-varved sediments of a small, boreal-forest lake. Aquatic Sciences, 56:4058.Google Scholar
Anderson, R. Y. 1977. Short-term sedimentation response to lakes in western United States as measured by automated sampling. Limnology and Oceanography, 22:423433.Google Scholar
Axelrod, D. I., and Schorn, H. E. 1994. The 15 Ma floristic crisis at Gillam Spring, Washoe County, northwestern Nevada. Paleobios, 16:110.Google Scholar
Barker, P., Fontes, J.-C., Gasse, F., and Druart, J.-C. 1994. Experimental dissolution of diatom silica in concentrated salt solutions and implications for paleoenvironmental reconstruction. Limnology and Oceanography, 39:99110.Google Scholar
Barron, J. A. 1992. Neogene diatom datum levels in the equatorial and North Pacific, p. 413425. In Ishizaki, K., and Saito, T. (eds.), Centenary of Japanese Micropaleontology. Terra Scientific Publishing Co., Tokyo.Google Scholar
Barron, J. A., and Baldauf, J. G. 1989. Tertiary cooling steps and paleoproductivity as reflected by diatoms and biosiliceous ooze, p. 341354. In Berger, W. H. et al. (eds.), Productivity of the Ocean: Present and Past. John Wiley and Sons Limited, Chichester, England.Google Scholar
Barron, J. A., and Baldauf, J. G. 1990. Development of biosiliceous sedimentation in the North Pacific during the Miocene and early Pliocene, p. 4363. In Ryuichi, R. (ed.), Pacific Neogene Events. University of Tokyo Press, Tokyo.Google Scholar
Battarbee, R. W. 1973. A new method for the estimation of absolute microfossil numbers with reference especially to diatoms. Limnology and Oceanography, 18:647653.Google Scholar
Battarbee, R. W. 1978. Observations on the recent history of Lough Neagh and its drainage basin. Philosophical Transactions of the Royal Society, London, Series B, 281:303345.Google Scholar
Battarbee, R. W. 1984. Diatom analysis and the acidification of lakes. Philosophical Transactions of the Royal Society, London, Series B, 305:451477.Google Scholar
Belcher, J. H., and Swale, E. M. F. 1979. English freshwater records of Actinocyclus normanii (Greg.) Hustedt (Bacillariophyceae). British Phycological Journal, 14:225229.Google Scholar
Bradbury, J. P. 1975. Diatom stratigraphy and human settlement in Minnesota. Geological Society of America Special Paper 171, 74 p.Google Scholar
Bradbury, J. P. 1978. A paleolimnological comparison of Burntside and Shagawa Lakes, northeastern Minnesota. Environmental Protection Agency, Ecological Research Series, EPA-600/3-78-004. U.S. Government Printing Office, Washington, D.C., 50 p.Google Scholar
Bradbury, J. P. 1984. Fossil Actinocyclus species from freshwater Miocene deposits in China and the United States, p. 157172. In Mann, D. G. (ed.), Proceedings of the Seventh International Diatom Symposium. Koeltz, Koenigstein, Germany.Google Scholar
Bradbury, J. P. 1988. A climatic-limnologic model of diatom succession for paleolimnological interpretation of varved sediments at Elk Lake, Minnesota. Journal of Paleolimnology, 1:115131.Google Scholar
Bradbury, J. P. 1991. The late Cenozoic diatom stratigraphy and paleolimnology of Tule Lake, Siskiyou County, California. Journal of Paleolimnology, 6:205255.Google Scholar
Bradbury, J. P., Bezrukova, Y. V., Chernyaeva, G. P., Colman, S. M., Khursevich, G., King, J. W., and Likoshway, Y. V. 1994. A synthesis of post-glacial diatom records from Lake Baikal. Journal of Paleolimnology, 10:213252.Google Scholar
Bradbury, J. P., and Blair, W. N. 1979. Paleoecology of the upper Miocene Hualapai Limestone Member of the Muddy Creek Formation, northwestern Arizona, p. 293303. In Rocky Mountain Association of Geologists and Utah Geological Association, Basin and Range Symposium, Ely, Nevada.Google Scholar
Bradbury, J. P., Dean, W. E., and Anderson, R. Y. 1993. Holocene climatic and limnologic history of the north-central United States as recorded in the varved sediments of Elk Lake, Minnesota: a synthesis, p. 309328. In Bradbury, J. P. and Dean, W. E. (eds.), Elk Lake, Minnesota: evidence for rapid climate change in the north-central United States. Geological Society of America Special Paper, 276.Google Scholar
Bradbury, J. P., Dieterich, K. V., and Williams, J. L. 1985. Diatom flora of the Miocene lake beds near Clarkia in northern Idaho, p. 3359. In Smiley, C. J. (ed.), Late Cenozoic History of the Pacific Northwest. American Association for the Advancement of Science, San Francisco.Google Scholar
Bradbury, J. P., and Dieterich-Rurup, K. 1993. Holocene diatom paleolimnology of Elk Lake, Minnesota, p. 215237. In Bradbury, J. P. and Dean, W. E. (eds.). Elk Lake, Minnesota: evidence for rapid climate change in the north-central United States. Geological Society of America Special Paper 276.Google Scholar
Bradbury, J. P., and Krebs, W. N. 1982. Neogene and Quaternary lacustrine diatoms of the western Snake River Basin, Idaho–Oregon, U.S.A. Acta Geologica Academiae Scientiarum Hungaricae, 25:97122.Google Scholar
Bradbury, J. P., and Krebs, W. N. 1995. Actinocyclus (Bacillariophyta) species from lacustrine Miocene deposits of the western United States. U.S. Geological Survey Professional Paper, 1543-A:152.Google Scholar
Bradbury, J. P., Tarapchak, S. J., Waddington, J. C. B., and Wright, R. F. 1975. The impact of a forest fire on a wilderness lake in northeastern Minnesota. Verhandlungen der Internationalen Vereinigung für Limnologie, 19:875883.Google Scholar
Bradley, W. H. 1963. Paleolimnology, p. 621652. In Frey, D. G. (ed.), Limnology in North America. University of Wisconsin Press, Madison.Google Scholar
Brugam, R. B. 1980. Diatom stratigraphy of Kirchner Marsh, Minnesota. Quaternary Research, 13:133146.Google Scholar
Brugam, R. B. 1983. The relation between fossil diatom assemblages and limnological conditions. Hydrobiologia, 98:223235.Google Scholar
Cholnoky, B. J. 1968. Die Ökologie der Diatomeen in Binnengewässern. Cramer, Lehre, Germany, 699 p.Google Scholar
Darwin, C. 1859. On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life. John Murray, London, 502 p.CrossRefGoogle Scholar
Dun, W. S., Rands, W. H., and David, B. A. 1901. Note on the occurrence of diatoms, radiolaria and infusoria in the Rolling Downs Formation (Lower Cretaceous), Queensland. Proceedings of the Linnean Society of New South Wales, 26:299309.Google Scholar
Ehrenberg, C. G. 1854. Mikrogeologie: das Erden und Felsen schaffende Wirken des unsichtbar kleinen selbständigen Lebens auf der Erde. Leopold Voss, Leipzig, Germany, 374 p.Google Scholar
Flower, R. J., and Batarbee, R. W. 1983. Diatom evidence for recent acidification of two Scottish lochs. Nature, 305:130133.Google Scholar
Fourtanier, E. 1987. Diatomées néogènes d'Afrique; approche biostratigraphique en milieux marin (Sud-Ouest Africain) et continental. Unpublished Ph. D. dissertation, École Normale Supérieure de Fontenay Saint-Cloud, Fontenay Saint Cloud, France, 365 p.Google Scholar
Fourtanier, E. and Gasse, F. 1988. Premiers jalons d'une biostratigraphie et évolution des diatomées lacustres d'Afrique depuis 11 Ma. Comptes Rendus de l'Academie des Sciences, Paris, 306: 14011408.Google Scholar
Fourtanier, E., Gasse., F., Bellier, O., Bonhomme, M. G., and Robles, I. 1993. Miocene non-marine diatoms from the western Cordilleran basins of northern Peru. Diatom Research, 8:1330.Google Scholar
Frey, D. G. 1964. Remains of animals in Quaternary lake and bog sediments and their interpretation. Archiv für Hydrobiologie Beihefte, 2:1114.Google Scholar
Fritz, S. C., Engstrom, D. R., and Haskell, B. J. 1994. ‘Little Ice Age’ aridity in the North American Great Plains: a high-resolution reconstruction of salinity fluctuations from Devils Lake, North Dakota, USA. The Holocene, 4:6973.Google Scholar
Fritz, S. C., Juggins, S., and Battarbee, R. W. 1993. Diatom assemblages and ionic characterization of lakes of the northern Great Plains: a tool for reconstructing past salinity and climate fluctuations. Canadian Journal of Fisheries and Aquatic Science, 50:18441856.Google Scholar
Fromm, E. 1938. Geochronologisch datierte Pollendiagramme und Diatomeen-analysen aus Ångermanland. Geologiska Föreningens i Stockholm Förhandlingar, 60:365381.Google Scholar
Gams, H. 1927. Die Geschichte der Lunzer Seen, Moore und Wälder. Internationale Revue der Gesamten Hydrobiologie und Hydrographie, 18:305386.Google Scholar
Gasse, F. 1986. East African diatoms: Taxonomy, ecological distribution. Bibliotheca Diatomologica 11. J. Cramer, Berlin, 201 p.Google Scholar
Gasse, F., and Tekaia, F. 1982. Tentative definition, comparison and interpretation of fossil diatom assemblages from eastern Africa. Acta Geologica Academiae Scientiarum Hungaricae, 25:135147.Google Scholar
Gersonde, R., and Harwood, D. M. 1990. Lower Cretaceous diatoms from ODP Leg 113 site 693 (Weddell Sea). Part 1; vegetative cells, p. 365402. In Barker, P. F. et al., Proceedings of the Ocean Drilling Program, Scientific Results, 113. Ocean Drilling Program, College Station, Texas.Google Scholar
Gregory, W., 1855. On a post-Tertiary lacustrine sand containing diatomaceous exuviae from Glenshira near Inverary. Quekett Journal of Microscopical Science, 3:3043.Google Scholar
Haq, B. U., Hardenbol, J., and Vail, P. R. 1987. Chronology of fluctuating sea levels since the Triassic. Science, 235:11561167.Google Scholar
Harper, H. E. 1977. A lower Cretaceous (Aptian) diatom flora from Australia. Nova Hedwigia, 54:411.Google Scholar
Hasle, G. R. 1977. Morphology and taxonomy of Actinocyclus normanii f. subsalsa (Bacillariophyceae). Phycologia, 16:321328.Google Scholar
Hasle, G. R. 1985. Thalassiosiropsis, a new diatom genus from the fossil records. Micropaleontology, 31: 8291.Google Scholar
Haworth, E. Y. 1976. Two late glacial (Late Devensian) diatom assemblage profiles from northern Scotland. New Phytologist, 77:227256.Google Scholar
Haworth, E. Y. 1977. The sediments of Lake George (Uganda): V. The diatom assemblages in relation to the ecological history. Archiv für Hydrobiologie, 80:200215.Google Scholar
Hustedt, F. 1930-1966. Die Kieselalgen Deutschlands, Österreichs und der Schweiz unter Berücksichtigung der übrigen Länder Europas sowie der angrenzenden Meeresgebiete, Band 7. In L. Rabenhorsts Kryptogamen-Flora von Deutschland, Österreich und der Schweiz. Akademische Verlagsgesellschaft, Leipzig; Part 1, 920 p.; Part 2, 845 p.; Part 3, 816 p. Google Scholar
Hustedt, F. 1957. Die Diatomeenflora des Flusssystems der Weser im Gebiet der Hansestadt Bremen. Abhandlungen des Naturwissenschaftichen Vereins Bremen, 34:181440.Google Scholar
Hutchinson, G. E. 1979. Ianula: an account of the history and development of the Lago di Monterosi, Latium, Italy. Transactions of the American Philosophical Society, New Series, 60(4):1178.Google Scholar
Ingle, J. C. Jr. 1981. Origin of Neogene diatomites around the North Pacific rim, p. 159179. In Garrison, R. E. et al. (eds.), The Monterey Formation and Related Siliceous Rocks of California. Society of Economic Paleontologists and Mineralogists, Pacific Section, Special Publication.Google Scholar
Janecek, T. R., and Rea, D. K. 1983. Eolian deposition in the northeast Pacific Ocean: Cenozoic history of atmospheric circulation. Geological Society of America Bulletin, 94:730738.Google Scholar
Kadey, F. L. Jr. 1983. Diatomite, p. 677708 In Lefond, S. J. (ed.), Industrial Minerals and Rocks, 5th Edition, Vol. 1. American Institute of Mining Engineers, New York.Google Scholar
Kennett, J. P. 1991. Antarctic cryospheric evolution: influence on circum-Pacific Neogene climate. Fifth International Congress on Pacific Neogene Stratigraphy and IGCP Project 246, Abstracts. Shizuoka, Japan, p. 6061.Google Scholar
Khursevich, G. K. 1994. Evolution and phylogeny of some diatom genera of the class Centrophyceae, p. 257267. In Kociolek, J. P. (ed.), Proceedings of the 11th International Diatom Symposium, San Francisco. Memoirs of the California Academy of Sciences, 17.Google Scholar
Kilham, P., and Kilham, S. S. 1978. Natural community bioassays: predictions of results based on nutrient physiology and competition. Verhandlungen der Internationalen Vereinigung für Limnologie, 20:6874.Google Scholar
Kilham, P., Kilham., S. S., and Hecky, R. E. 1986. Hypothesized resource relationships among African planktonic diatoms. Limnology and Oceanography, 31:1169–181.Google Scholar
Kjemperud, A. 1981. Diatom changes in the sediments of basins possessing marine/lacustrine transitions in Frosta, Nord-Trondelag, Norway. Boreas, 10:2738.Google Scholar
Kociolek, J. P., and Stoermer, E. F. 1989. Phylogenetic relationships and evolutionary history of the diatom genus Gomphoneis . Phycologia, 28:438454.Google Scholar
Kociolek, J. P., and Stoermer, E. F. 1990. Diatoms from the upper Miocene Hot Springs Limestone, Snake River Plain, Idaho (U.S.A.). Micropaleontology, 36:331352.Google Scholar
Krebs, W. N. 1994. The biochronology of freshwater planktonic diatom communities in western North America, p. 485499. In Kociolek, J. P. (ed.), Proceedings of the 11th International Diatom Symposium, San Francisco. Memoirs of the California Academy of Sciences, 17.Google Scholar
Krebs, W. N. and Bradbury, J. P. 1995. Geologic ranges of lacustrine Actinocyclus species, western United States. U.S. Geological Survey Professional Paper, 1543-B:5373.Google Scholar
Krebs, W. N., Bradbury., J. P., and Theriot, E. 1987. Neogene and Quaternary lacustrine diatom biochronology, western USA. Palaios, 2:505513.Google Scholar
Lange-Bertalot, H., and Simonsen, R. 1978. A taxonomic revision of the Nitzschiae lanceolatae Grunow. 2. European and related extra-European freshwater and brackish water taxa. Bacillaria, 1:11111.Google Scholar
Lewin, R. 1983. Origin of species in stressed environments. Science, 221:1153.Google Scholar
Livingstone, D. A. 1955. A lightweight piston sampler for lake deposits. Ecology, 36:137139.Google Scholar
Lohman, K. E. 1961. Geologic ranges of Cenozoic nonmarine diatoms. U.S. Geological Survey Professional Paper, 424-D:234236.Google Scholar
Lohman, K. E., and Andrews, G. W. 1968. Late Eocene nonmarine diatoms from the Beaver Divide area, Fremont County, Wyoming. U.S. Geological Survey Professional Paper, 593-E:126.Google Scholar
Lund, J. W. G. 1966. The importance of turbulence in the periodicity of certain freshwater species of the genus Melosira . Botanicheskii Zhurnal, 51:176187.Google Scholar
Lundquist, G. 1927. Bodenablagerungen und Entwicklungstypen der Seen, p. 1124. In Thienemann, A. (ed.), Die Binnengewässer 11. Schweizerbart'sche Verlagsbuchhandlung, Stuttgart, Germany.Google Scholar
Merilainen, J. 1971. The recent sedimentation of diatom frustules in four meromictic lakes. Annales Botanicae Fennici, 8:160176.Google Scholar
Nipkow, F. 1920. Vorläufige Mitteilungen über Untersuchungen des Schlammabsatzes im Zürichsee. Zeitschrift der Hydrobiologie, 1:100122.Google Scholar
Nipkow, F. 1927. Über das Verhalten der Skelette planktischer Kieselalgen im geschichteten Tiefenschlamm des Zürich- und Baldeggersees. Schweizerische Zeitschrift für Hydrologie, 4:71120.Google Scholar
Okeden, F. 1855. On the deep diatomaceous deposits of the mud of Milford Haven and other localities. Quekett Journal of Microscopical Science, 3:2530.Google Scholar
Patrick, R. 1943. The diatoms of Linsley Pond, Connecticut. Proceedings of the Academy of Natural Science of Philadelphia, 95:53110.Google Scholar
Patrick, R., and Reimer, C. W. 1966. The Diatoms of the United States, Exclusive of Alaska and Hawaii, Vol. 1. Academy of Natural Science of Philadelphia Monograph, 13, 688 p.Google Scholar
Pennington, W. 1943. Lake sediments: the bottom deposits of the north basin of Windermere with special reference to diatom succession. New Phytologist, 42:127.Google Scholar
Pickford, M. 1987. Concordance entre la paléontologie continentale de l' Est africain et les événements paléoocéanographiques au Néogène. Comptes Rendus de l'Academie des Sciences, Paris; 304:675678.Google Scholar
Proshkina-Lavrenko, A. I. 1960. K evolyutsii diatomovykh vodorosley. Moscovskoe Obshchestvo Ispytatelei Prirody Biulleten Otdel Biologicheskii, 65(5):5262.Google Scholar
Radionova, E. P. 1987. Diatom morphology of the genus Cestodiscus from lower middle Miocene deposits of the tropical zone of the Pacific Ocean. Academia Nauk, SSSR, Geologiskii Institut Mikropaleontologii, 29:141154. (In Russian.) Google Scholar
Radionova, E. P. 1990. Structure of the diatom assemblage of the tropical Pacific. 11th International Symposium on Living and Fossil Diatoms, Abstracts, San Francisco, p. 90.Google Scholar
Rea, D. K., and Bloomstine, M. K. 1986. Neogene history of the South Pacific trade winds: evidence for hemispherical asymmetry of atmospheric circulation. Palaeogeography, Palaeoclimatology, Palaeoecology, 55:5564.Google Scholar
Renberg, I. 1976. Palaeolimnological investigations in Lake Prastsjon. Early Norrland, 9:113159.Google Scholar
Rothpletz, A. 1896. Über die Flysch Fucoiden und einige andere fossile Algen, sowie über liassische diatomeenführende Hornschwämme. Zeitschrift der Deutschen Geologischen Geschellschaft, 48:854914.Google Scholar
Rothpletz, A. 1900. Über einen neuen jurassischen Hornschwamm und die darin eingeschlossenen Diatomeen. Zeitschrift der Deutschen Geologischen Geschellschaft, 52:154160.Google Scholar
Round, F. E. 1981. Some aspects of the origin of diatoms and their subsequent evolution. BioSystems, 14:483486.Google Scholar
Round, F. E., and Crawford, R. M. 1981. The lines of evolution of the Bacillariophyta 1. Origin. Proceedings of the Royal Society, London, Series B, 211:237260.Google Scholar
Round, F. E., Crawford., R. M., and Mann, D. G. 1990. The Diatoms. Biology and Morphology of the Genera. Cambridge University Press, Cambridge, 747 p.Google Scholar
Round, F. E., and Sims, P. A. 1980. The distribution of diatom genera in marine and freshwater environments and some evolutionary considerations, p. 301320. In Ross, R. (ed.), Proceedings of the Sixth Symposium on Recent and Fossil Diatoms, Budapest. Koeltz, Koenigstein, Germany.Google Scholar
Rüst, D. 1885. Beitrage zur Kenntnis der fossilen Radiolarien aus Gesteinen des Jura. Palaeontographica, 31:269322.Google Scholar
Schmid, A. 1976. Morphologische und physiologische Untersuchungen an Diatomeen des Neusiedler-Sees. II. Licht und rasterelektronmikroskopische Schalenanalyse der umweltabhängigen Zyklomorphose von Anomoeoneis sphaerophora (Kg.) Pfitzer. Nova Hedwigia, 28:30351.Google Scholar
Serieyssol, K. K. 1988. Biostratigraphy and taxonomic interpretations based on the survey of fossil freshwater centric genera. 10th International Symposium on Living and Fossil Diatoms, Abstracts, Joensuu, Finland, 114 p.Google Scholar
Servant-Vildary, S. 1982. Altitudinal zonation of mountainous diatom flora in Bolivia: application to the study of the Quaternary. Acta Geologica Academiae Scientiarum Hungaricae, 25:179210.Google Scholar
Simola, H. 1977. Diatom succession in the formation of annually laminated sediment in Lovojarvi, a small eutrophicated lake. Annales Botanicus Fennici, 14:143148.Google Scholar
Sovereign, H. E. 1963. New and rare diatoms from Oregon and Washington. Proceedings of the California Academy of Science, 4th Series, 31:349368.Google Scholar
Stager, J. C. 1982. The diatom record of Lake Victoria (East Africa): the last 17,000 years, p. 455476. In Mann, D. G. (ed.), Proceedings of the Seventh International Diatom Symposium, Philadelphia. Koeltz, Koenigstein, Germany.Google Scholar
Stein, R. 1986. Late Neogene evolution of paleoclimate and paleoceanic circulation in the northern and southern hemisphere: a comparison. Geologische Rundschau, 75:125138.Google Scholar
Stein, R., and Robert, C. 1985. Siliclastic sediments at sites 588, 590, and 591: Neogene and Paleogene evolution in the southwest Pacific and Australian climate, p. 14371455. In. Blakeskee, J. H. (ed.), Initial Reports of the Deep Sea Drilling Project, 90. U.S. Government Printing Office, Washington, D.C. Google Scholar
Stein, R., Kociolek, J. P., Schleske, C. L., and Conley, D. J. 1985. Siliceous microfossil succession in the recent history of Lake Superior. Proceedings of the Academy of Natural Sciences of Philadelphia, 137:106118.Google Scholar
Stein, R., and Ladewski, T. B. 1976. Apparent optimal temp, atures for the occurrence of some common phytoplankton species in southern Lake Michigan. The University of Michigan, Great Lakes Research Division, Publication 18, 49 p.Google Scholar
Swirydczuk, K., Larson, G. P., and Smith, G. R. 1981. Volcanic ash stratigraphy of the Glenns Ferry and Chalk Hills Formations, western Snake River Plain, Idaho. Idaho Bureau of Mines and Geology Open-File Report, 81-1, 60 p.Google Scholar
Taylor, G., Gasse, F., Walker, P., and Morgan, P. J. 1990. Paleoecological and paleoclimatological significance of Miocene freshwater diatomaceous deposits from southern New South Wales. Palaeogeography, Palaeoclimatology, Palaeoecology, 77:127143.Google Scholar
Temniskova-Topalova, D., Ognjanova-Rumenova, N., and Valeva, M. 1994. Nonmarine biostratigraphy of some genera of the class Centrophyceae from southern Bulgaria, p. 301310. In Kociolek, J.P. (ed.), Proceedings of the 11th International Diatom Symposium, San Francisco. Memoirs of the California Academy of Sciences, 17.Google Scholar
Theriot, E. 1990. New species of Mesodictyon (Bacillariophyta: Thalassiosiraceae) in late Miocene lacustrine deposits of the Snake River Basin, Idaho. Proceedings of the Academy of Natural Sciences of Philadelphia, 142:119.Google Scholar
Theriot, E. 1992. Clusters, species concepts and morphological evolution of diatoms. Systematic Biology, 41:141157.Google Scholar
Theriot, E., and Bradbury, J. P. 1987. Mesodictyon, a new fossil genus of the centric diatom family Thalassiosiraceae from the Miocene Chalk Hills Formation, western Snake River Plain, Idaho. Micropaleontology, 33:356367.Google Scholar
Tolonen, K., and Jaakkola, T. 1983. History of lake acidification and air pollution studied on sediments in south Finland. Annales Botanicae Fennici, 10:5778.Google Scholar
Van Landingham, S. L. 1970. Origin of an early non-marine diatomaceous deposit in Broadwater County, Montana, USA. Beihefte zur Nova Hedwigia, 31:449484.Google Scholar
Werner, D. (ed.). 1977. The Biology of Diatoms. Botanical Monographs, 13, 498 p.Google Scholar
Wetzel, R. G. 1975. Limnology. W. B. Saunders, Publishers, Philadelphia, 743 p.Google Scholar
Woodruff, F. 1985. Changes in Miocene deep-sea benthic foraminiferal distribution in the Pacific Ocean: relationship to paleoceanography, p. 131175. In Kennett, J. P. (ed.), The Miocene Ocean: Paleoceanography and Biogeography. Geological Society of America Memoir, 163.Google Scholar
Wright, H. E. 1967. A square-rod piston sampler for lake sediments. Journal of Sedimentary Petrology, 37:975976.Google Scholar
Wutrich, M., and Matthey, W. 1980. The diatoms of the “Tourbiere du Cachot” peat bog (Swiss Jura Mountains). III. Transportation of diatoms by wind, water birds, and aquatic insects. Schweizerische Zeitschrift für Hydrologie, 42:269284.Google Scholar