Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-09T22:09:21.640Z Has data issue: false hasContentIssue false

The Arthropod Fossil Record: Biologic and Taphonomic Controls on its Composition

Published online by Cambridge University Press:  17 July 2017

Donald G. Mikulic*
Affiliation:
Illinois State Geological Survey, 615 E. Peabody Drive, Champaign, Illinois 61820, U.S.A.

Extract

It is difficult to overestimate the importance of arthropods in the history of life. In terms of diversity and abundance, modern arthropods embody the ultimate success of the metazoa. Their prominence stems from an innovative, durable body plan, allowing mobility and adaptability for almost any environment in the earth's biosphere. Arthropods have been able to exploit an enormous range of lifestyles, becoming a conspicuous biotic component of many marine and terrestrial settings.

Type
Research Article
Copyright
Copyright © 1990 Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allison, P.A. 1986. Soft-bodied animals in the fossil record: the role of decay in fragmentation during transport. Geology, 14:979981.Google Scholar
Allison, P.A. 1988. The role of anoxia in the decay and mineralization of proteinaceous macrofossils. Paleobiology, 14:139154.Google Scholar
Babcock, L.E., and Robison, R.A. 1989. Preferences of Palaeozoic predators. Nature, 337:695696.Google Scholar
Baird, G.C., Shabica, C.W., Anderson, J.L., and Richardson, E.S. Jr. 1985. Biota of a Pennsylvanian muddy coast: Habitats within the Mazonian Delta Complex, northeast Illinois. Journal of Paleontology, 59:253281.Google Scholar
Barnes, R.D. 1980. Invertebrate Zoology, 4th edition. Saunders College, Philadelphia, 1089 p.Google Scholar
Bishop, G.A. 1981. Occurrence and fossilization of the Dakotacancer assemblage, Upper Cretaceous Pierre Shale, South Dakota, p. 383414. In Gray, J., Boucot, A.J., and Berry, W.B.N. (eds.), Communities of the Past. Hutchinson Ross Publishing Company, Stroudsburg, Pennsylvania.Google Scholar
Bishop, G.A. 1986. Taphonomy of North American decapods. Journal of Crustacean Biology, 6:326–255.Google Scholar
Briggs, D.E.G. 1985. Gigantism in Palaeozoic arthropods. Special Papers in Palaeontology, 33:157.Google Scholar
Briggs, D.E.G., and Whittington, H.B. 1985. Modes of life of arthropods from the Burgess Shale, British Columbia. Transactions of the Royal Society of Edinburgh (Earth Science), 76:149160.Google Scholar
Carpenter, F.M., and Burnham, L. 1985. The geological record of insects. Annual Review of Earth and Planetary Sciences, 13:297314.CrossRefGoogle Scholar
Cloudsley-Thompson, J.L. 1988. Evolution and adaptation of terrestrial arthropods. Springer-Verlag, Berlin, 141 p.CrossRefGoogle Scholar
Morris, S. Conway 1986. The community structure of the Middle Cambrian Phyllopod Bed (Burgess Shale). Palaeontology, 29:423467.Google Scholar
Morris, S. Conway 1989. Burgess Shale faunas and the Cambrian explosion. Science, 246:339346.CrossRefGoogle ScholarPubMed
Feldmann, R.M. 1981. Paleobiogeography of North American lobsters and shrimps (Crustacea, Decapoda). Geobios, 14:449468.Google Scholar
Finch, G.E. 1904. Notes on the position of the individuals in a group of Nileus vigilans found at Elgin, Iowa. Proceedings of the Iowa Academy of Science, 11:179181.Google Scholar
Franzen, J.L. 1985. Exceptional preservation of Eocene vertebrates in the lake deposit of Grube Messel (West Germany). Philosophical Transaction of the Royal Society of London, 311B:181186.Google Scholar
Halleck, M.S. 1973. Crinoids, hardgrounds, and community succession: The Silurian Laurel-Waldron contact in southern Indiana. Lethaia, 6:239252.CrossRefGoogle Scholar
Harrington, H.J. 1959. General description of Trilobita, p. 38117. In Moore, R.C. (ed.), Treatise on Invertebrate Paleontology, Part 0, Arthropoda I. Geological Society of America and The University of Kansas Press, Lawrence.Google Scholar
Henningmoen, G. 1973. Moulting in trilobites. Fossils and Strata, 4:179200.Google Scholar
Kauffman, E.G. 1981. Ecological reappraisal of the German Posidonienschiefer, p. 311382. In Gray, J., Boucot, A.J., and Berry, W.B.N. (eds.), Communities of the Past. Hutchinson Ross Publishing Company, Stroudsburg, Pennsylvania.Google Scholar
Kidwell, S.M. 1986. Taphonomic feedback in Miocene assemblages: Testing the role of dead hardparts in benthic communities. Palaios, 1:239255.CrossRefGoogle Scholar
Kidwell, S.M., and Behrensmeyer, A.K. 1988. Overview: ecological and evolutionary implications of taphonomic processes. Palaeogeography, Palaeoclimatology, Palaeoecology, 63:114.Google Scholar
Kluessendorf, J. 1990. Depositional and taphonomic aspects of a Silurian (Brandon Bridge, Llandovery-Wenlock) Fossils Konservat Lagerstätte from Waukesha, Wisconsin (U.S.A.), predictability of North American Silurian Fossil Konservat Lagerstätten, and some insights into ichnofacies. Unpublished Ph.D. dissertation. University of Illinois, Urbana, 115 p.Google Scholar
Ladd, H.S. 1928. The stratigraphy and paleontology of the Maquoketa Shale of Iowa, Part I. Iowa Geological Survey Annual Report (1928), 34:305448.Google Scholar
Ludvigsen, R. 1989. The Burgess Shale: Not in the shadow of the Cathedral Escarpment. Geoscience Canada, 16:5159.Google Scholar
May, R.M. 1988. How many species are there on Earth? Science, 241:14411449.CrossRefGoogle ScholarPubMed
Mcnamara, K.J., and Rudkin, D.M. 1984. Techniques for trilobite exuviation. Lethaia, 17:153173.CrossRefGoogle Scholar
Mikulic, D.G. 1979. The paleoecology of Silurian trilobites with a section of the Silurian stratigraphy of southeastern Wisconsin. Unpublished Ph.D. dissertation, Oregon State University, Corvallis, 864 p.Google Scholar
Mikulic, D.G., Briggs, D.E.G., and Kluessendorf, J. 1985a. A Silurian soft-bodied biota. Science, 228:715717.Google Scholar
Mikulic, D.G., Briggs, D.E.G., and Kluessendorf, J. 1985b. A new exceptionally preserved biota from the Lower Silurian of Wisconsin, U. S. A. Philosophical Transaction of the Royal Society of London, 311B:7586.Google Scholar
Müller, A.H. 1979. Fossilization (Taphonomy), p. A2A78. In Robison, R.A. and Teichert, C. (eds.), Treatise on Invertebrate Paleontology, Part A, Introduction. Geological Society of America and The University of Kansas Press, Lawrence.Google Scholar
Niklas, K.J., Tiffney, B.H., and Knoll, A.H. 1985. Patterns in vascular land plant diversification: an analysis at the species level, p. 97128. In Valentine, J.W. (ed.), Phanerozoic Diversity Patterns. Princeton University Press, Princeton.Google Scholar
Owen, A.W. 1985. Trilobite abnormalities. Transactions of the Royal Society of Edinburgh (Earth Science), 76:255272.Google Scholar
Plotnick, R.E. 1986. Taphonomy of a modern shrimp: Implications for the arthropod fossil record. Palaios, 1:286293.Google Scholar
Plotnick, R.E., Baumiller, T., and Wetmore, K.L. 1988. Fossilization potential of the mud crab, Panopeus (Brachyura: Xanthidae) and temporal variability in crustacean taphonomy. Palaeogeography, Palaeclimatology, Palaeoecology, 63:2744.Google Scholar
Prokop, R. 1965. Argodiscus hornyi gen. n. et sp. n. (Edrioasteroidea) from the Middle Ordovician of Bohemia and a contribution to the ecology of the edrioasteroids. Casopis Narodni Muzeum, R. prirodoved., 134:3032.Google Scholar
Raasch, G.O. 1939. Cambrian Merostomata. Geological Society of America Special Papers, 19, 146 p.Google Scholar
Raup, D.M. 1976. Species diversity in the Phanerozoic: a tabulation. Paleobiology, 2:279288.Google Scholar
Richardson, E.S. Jr. 1980. Life at Mazon Creek, p. 217224. In Langenheim, R.L. Jr. and Mann, C.J. (eds.), Middle and Late Pennsylvanian strata on margin of Illinois Basin. Tenth Annual Field Conference, Great Lakes Section, Society of Economic Paleontologists and Mineralogists, Urbana.Google Scholar
Richardson, E.S. Jr., and Johnson, R.G. 1971. The Mazon Creek faunas. Proceedings of the North American Paleontological Convention, Part I, Extraordinary Fossils: 12221235.Google Scholar
Schäfer, W. 1972. Ecology and Palaeoecology of Marine Environments. The University of Chicago Press, Chicago, 568 p.Google Scholar
Seilacher, A. 1985. Trilobite paleobiology and substrate relationships. Transactions of the Royal Society of Edinburgh (Earth Science), 76:231237.Google Scholar
Seilacher, A., Reif, W.-E., and Westphal, F. 1985. Sedimentological, ecological, and temporal patterns of fossil Lagerstätten. Philosophical Transaction of the Royal Society of London, 311B:522.Google Scholar
Selden, P.A. 1985. Autecology of Silurian eurypterids. Palaeontological Association, Special Papers in Palaeontology, 32:3954.Google Scholar
Sepkoski, J.J. Jr., and Hulver, M.L. 1985. An atlas of Phanerozoic clade diversity diagrams, p. 1130. In Valentine, J.W. (ed.), Phanerozoic Diversity Patterns. Princeton University Press, Princeton.Google Scholar
Shear, W.A., Selden, P.A., Rolfe, W.D.I., Bonamo, P.M., and Grierson, J.D. 1987. New terrestrial arachnids from the Devonian of Gilboa, New York (Arachnida, Trigonotarbida). American Museum Novitates, 2901:174.Google Scholar
Signor, P.W. III. 1985. Real and apparent trends in species richness through time, p. 129150. In Valentine, J. W. (ed.), Phanerozoic Diversity Patterns. Princeton University Press, Princeton.Google Scholar
Snajdr, M. 1983. Epifauna on the exuviae of Bohemian Devonian trilobites. Casopis pro mineralogii a geologii, 28:181186.Google Scholar
Snajdr, M. 1984. Bohemian Ordovician Odontopleuridae (Trilobita). Sbornik Geologickych Ved Paleontologie, 26:4782.Google Scholar
Speyer, S.E. 1985. Moulting in phacopid trilobites. Transactions of the Royal Society of Edinburgh (Earth Science), 76:239253.Google Scholar
Speyer, S.E. 1987. Comparative taphonomy and palaeoecology of trilobite lagerstätten. Alcheringa, 11:205232.Google Scholar
Speyer, S.E. 1988. Biostratinomy and functional morphology of enrollment in two Middle Devonian trilobites. Lethaia, 21:121138.CrossRefGoogle Scholar
Speyer, S.E., and Brett, C.E. 1985. Clustered trilobite assemblages in the Middle Devonian Hamilton Group. Lethaia, 18:85103.Google Scholar
Speyer, S.E., and Brett, C.E. 1986. Trilobite taphonomy and Middle Devonian taphofacies. Palaios, 1:312327.CrossRefGoogle Scholar
Sprinkle, J. 1973. Morphology and Evolution of Blastozoan Echinoderms. Museum of Comparative Zoology Special Publication, 283 p.Google Scholar
Towe, K.M. 1987. Fossil preservation, p. 3641. In Boardman, R.S., Cheetham, A.H., and Rowell, A.J. (eds.), Fossil Invertebrates. Blackwell Scientific Publications, Palo Alto.Google Scholar
Tshudy, D.M., Feldmann, R.M., and Ward, P.D. 1988. Scavenging of lobster remains by Nautilus, and its taphonomic implications. Geological Society of America Abstracts with Programs, 20(7):A341.Google Scholar
Valentine, J.W., Foin, T.C., and Peart, D. 1978. A provincial model of Phanerozoic marine diversity. Paleobiology, 4:5566.Google Scholar
Westrop, S.R. 1986. Taphonomic versus ecologic controls on taxonomic relative abundance patterns in tempestites. Lethaia, 19:123132.Google Scholar
Whittington, H.B. 1977. The Middle Cambrian trilobite Naraoia, Burgess Shale, British Columbia. Fossils and Strata, 4:97136.CrossRefGoogle Scholar
Zangerl, R., Woodland, B.G., Richardson, E.S. Jr., and Zachry, D.L. Jr. 1969. Early diagenetic phenomena in the Fayetteville black shale (Mississippian) of Arkansas. Sedimentary Geology, 3:87119.Google Scholar