Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-25T06:21:36.722Z Has data issue: false hasContentIssue false

Cretaceous Diatoms: Morphology, Taxonomy, Biostratigraphy

Published online by Cambridge University Press:  17 July 2017

David M. Harwood
Affiliation:
Department of Geology, University of Nebraska-Lincoln, Lincoln, 68588-0340
Vladimir A. Nikolaev
Affiliation:
Botanical Institute, The Academy of Sciences of Russia, Popova Street 2, St. Petersburg 197376 Russia

Extract

The Cretaceous record of the diatoms presented here outlines our understanding of their early morphological development. Recent documentation of well preserved Lower Cretaceous (Aptian/Albian) diatom assemblages provides a window into the early history of the diatoms and serves as a base for comparing their subsequent morphological changes. A brief review of diatom biology and morphology is provided to introduce this paper and that of Barron and Baldauf (this volume). Additional background information on the diatoms can be found in the works of Schrader and Schuette (1981), Tappan (1980), Bach and Burkhardt (1984), Barron (1985a, 1993), Fenner (1985), Ricard (1987), Bradbury (1988), Round et al. (1990), and Picket-Heaps et al. (1990).

Type
Research Article
Copyright
Copyright © 1995 Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allison, C. W., and Hilgert, J. W. 1986. Scale microfossils from the Early Cambrian of northwest Canada. Journal of Paleontology, 60:9731015.CrossRefGoogle Scholar
Anonymous. 1975. Proposals for a standardization of diatom terminology and diagnoses. Nova Hedwigia, Beihefte, 53:323354.Google Scholar
Bach, K., and Burkhardt, B. (eds.). 1984. Diatoms I. Shells in Nature and Techniques, Communications of the Institute of Lightweight Structures 28. Cramer, Stuttgart, 328 p.Google Scholar
Barker, I. W., and Meakin, S. H. 1947. New diatoms from the Moreno Shale. Journal of the Quekett Microscopical Club, series 4, 2:143144.Google Scholar
Barker, I. W., and Meakin, S. H. 1949. New and rare diatoms. Journal of the Quekett Microscopical Club, series 4, 3:301303.Google Scholar
Barron, J. A. 1985a. Miocene to Holocene planktic diatoms, p. 763809. In Saunders, J. et al. (eds.), Plankton Stratigraphy. Cambridge University Press, Cambridge.Google Scholar
Barron, J. A. 1985b. Diatom biostratigraphy of the CESAR 6 core, Alpha Ridge, p. 137148. In Jackson, H. R. et al. (eds.), Initial Geological Report on CESAR: The Canadian Expedition to Study the Alpha Ridge, Arctic Ocean. Geological Survey of Canada Paper, 84-22.Google Scholar
Barron, J. A. 1987. Diatomite: environmental and geological factors affecting its distribution, p. 164178. In Hein, J. R. (ed.), Siliceous Sedimentary Rock - Hosted Ores and Petroleum. Von Nostrand Reinhold, New York.Google Scholar
Barron, J. A. 1993. Diatoms, p. 155167. In Lipps, J. H. (ed.), Fossil Prokaryotes and Protists. Blackwell Scientific Publications, Boston.Google Scholar
Barron, J. A., and Baldauf, J. G. 1995. Cenozoic marine diatom biostratigraphy and applications to paleoclimatology and paleoceanography, p. 107118. In Blome, C. D. et al. (convenors), Siliceous Microfossils. Paleontological SOciety Shcort Courses in Paleontology, 8.Google Scholar
Bhattacharya, D., Medlin, L. K., Wainwright, P. O., Ariztia, E. V., Bibeau, C., Stickel, S. K., and Sogin, M. L. 1992. Algae containing chlorophylls a + c are paraphyletic: molecular evolutionary analysis of the Chromophyta. Evolution, 46:18011817.Google Scholar
Blome, C. D., and Albert, N. R. 1985. Carbonate concretions: an ideal sedimentary host for microfossils. Geology, 12:212215.Google Scholar
Bradbury, J. P. 1988. Fossil diatoms and Neogene paleolimnology. Palaeogeography, Palaeoclimatology, Palaeoecology, 62:299316.Google Scholar
Cavalier-Smith, T. 1986. The kingdom Chromista: origin and systematics. Progress in Phycological Research, 4:309347.Google Scholar
Cavalier-Smith, T. 1993. The kingdom Protozoa and its 18 phyla. Microbiological Reviews, 57:953994.Google Scholar
Crawford, R. M. 1981a. Some considerations of size reduction in diatom cell walls, p. 253265. In Ross, R. (ed.), Proceedings of the 6th Symposium on Recent and Fossil Diatoms. O. Koeltz Scientific Books, Koenigstein, Germany.Google Scholar
Crawford, R. M. 1981b. The siliceous components of the diatom cell wall and their morphological variation, p. 129156. In Simpson, T. L. and Volcani, B. E. (eds.), Silicon and Siliceous Structures in Biological Systems. Springer-Verlag, New York.CrossRefGoogle Scholar
Crawford, R. M., and Round, F. E. 1989. Corethron and Mallomonas — some striking morphological similarities, p. 295305. In Green, J. C. et al. (eds.), The Chromophyte Algae: Problems and Perspectives. Oxford University Press, New York.Google Scholar
Dell'Agnese, D. J., and Clark, D. L. 1994. Siliceous microfossils from the warm Late Cretaceous and early Cenozoic Arctic Ocean. Journal of Paleontology, 68:3147.CrossRefGoogle Scholar
Dun, W. S., Rands, W. H., and David, T. W. E. 1901. Note on the occurrence of diatoms, Radiolaria and infusoria in the Rolling Downs Formation (Lower Cretaceous), Queensland. Proceedings of the Society of New South Wales, 26:299309.Google Scholar
Edlund, M. B., and Stoermer, E. F. 1993. Resting spores of the freshwater diatoms Acanthoceras and Urosolenia . Journal of Paleolimnology, 9:5561.Google Scholar
Fenner, J. 1985. Late Cretaceous and Paleogene planktic diatom stratigraphy, p. 713762. In Saunders, J. et al. (eds.), Plankton Stratigraphy. Cambridge University Press, Cambridge.Google Scholar
Forti, A., and Schulz, P. 1932. Erste Mitteilung über Diatomeen aus dem Hannoverschen Gault. Beihefte, Botanischen Zentralblatt, 50:241246.Google Scholar
Foucault, A., Servant-Vildary, S., Fang, N., and Powichrowski, L. 1986. Un des plus anciens gisements de diatomées découvert dans l'Albien-Cénomanien inférieur des Alpes ligures (Italie): remarque sur l'appariation de ces algues. Comptes Rendu, Académie Sciences, Paris, t. 303. Serie II, 5:397402.Google Scholar
Fourtanier, E. 1991. Diatom biostratigraphy of Equatorial Indian Ocean Site 758, p. 189208. In Weissel, J. et al. (eds.), Proceedings of the Ocean Drilling Program, Scientific Results, 121. Ocean Drilling Program, College Station, Texas.Google Scholar
Fryxell, G. A. 1988. Polymorphism in relation to environmental conditions as exemplified by clonal cultures of Thalassiosira tumida (Janisch) Hasle, p. 6173. In Round, F.E. (ed.), Proceedings of the 9th Diatom Symposium 1986, BioPress Ltd. and O. Koeltz Scientific Books, Koenigstein, Germany.Google Scholar
Fryxell, G. A. 1994. Planktonic marine diatom winter stages: Antarctic alternatives to resting spores, p. 437448. Proceedings of the 11th International Diatom Symposium 1990, Memoirs of the California Academy of Sciences, 17.Google Scholar
Garrison, D. L. 1984. Planktonic diatoms, p. 212. In Steidinger, K. A. and Walker, L. M. (eds.), Marine Plankton Life Cycle Strategies. CRC Press, Inc., Boca Raton, Florida.Google Scholar
Geroch, S. 1978. Lower Cretaceous diatoms in the Polish Carpathians. Rocznik Polskiego Towarzystwa Geologicznego, 48:283295.Google Scholar
Gersonde, R. 1990. The paleontological significance of fossil diatoms from the high latitude oceans, p. 5763. In Medlin, L. K. and Priddle, J. (eds.), Polar Marine Diatoms. British Antarctic Survey, Cambridge.Google Scholar
Gersonde, R., and Harwood, D. M. 1990. Lower Cretaceous diatoms from ODP Leg 113 Site 693 (Weddell Sea). Part 1: vegetative cells, p. 365402. In Barker, P. F. et al. (eds.), Proceedings of the Ocean Drilling Program, Science Results, 113. Ocean Drilling Program, College Station, Texas.Google Scholar
Gleser, Z. I. 1966. Silicoflagellatophyceae. In Gollerbakh, M. M. (ed.), Cryptogamic Plants of the U.S.S.R. (Volume 7). Komarova Botanical Institute, Academy of Sciences of the USSR, 363 p. (Translated from Russian by Israel Program for Scientific Translations Ltd., Jerusalem, 1970).Google Scholar
Gleser, Z. I. 1984. Significance of research on the systematics of diatom for biostratigraphy and paleogeography. Yearbook of the All-Union Paleontological Society, XXXVII:284298, NAUKA, Leningrad. (In Russian.) Google Scholar
Gleser, Z. I. 1985. Outline of a new classification of diatomaceous algae, p. 6569. In Aktual'ne voprosi sovremennoi paleoal'gologii. Naukova Dumka, Kiev. (In Russian.) Google Scholar
Gleser, Z. I. 1986. Phylogeny of diatoms in the order Coscinodiscales and preliminaries of a new classification. Edgegodnik vsesouznogo paleontologicheskogo obsczestva, 29:180187. (In Russian.) Google Scholar
Gombos, A. M. Jr. 1982. Early and middle Eocene diatom evolutionary events. Bacillaria, 5:225242.Google Scholar
Green, J. C., Leadbeater, B. S. C., and Diver, W. L. (eds.). 1989. The Chromophyte Algae: Problems and Perspectives. Systematics Association Special Volume, 38. Clarendon Press, Oxford.Google Scholar
Haig, D. W., and Barnbaum, D. 1978. Early Cretaceous microfossils from the type Wallumbilla Formation, Surat Basin, Queensland. Alcheringa, 2:159178.Google Scholar
Hajós, M., and Stradner, H. 1975. Late Cretaceous Archaeomonadaceae, Diatomaceae, and Silicoflagellatae from the South Pacific Ocean, Deep Sea Drilling Project, Leg 29, Site 275, p. 9131009. In Kennett, J. P. et al. (eds.). Initial Reports of the Deep Sea Drilling Project, 29. U.S. Government Printing Office, Washington, D.C. Google Scholar
Hanna, G. D. 1927. Cretaceous diatoms from California. Occasional Paper of the California Academy of Sciences, 13:549.Google Scholar
Hanna, G. D. 1934. Additional notes on diatoms from the Cretaceous of California: Journal of Paleontology, 8:352355.Google Scholar
Hargraves, P. E. 1986. The relationship of some fossil diatom genera to resting spores, p. 6780. In Ricard, M. (ed.), Proceedings of the Eighth International Diatom Symposium 1984. O. Koeltz Scientific Books, Koenigstein, Germany.Google Scholar
Hargraves, P. E., and French, F. W. 1983. Diatom resting spores: significance and strategies, p. 4968. In Fryxell, G. A., (ed.). Survival Strategies of the Algae. Cambridge University Press, Cambridge.Google Scholar
Harwood, D. M. 1988. Upper Cretaceous and lower Paleocene diatom and silicoflagellate biostratigraphy from Seymour Island, eastern Antarctic Peninsula, p. 55129. In Feldmann, R. M. and Woodburne, M. O. (eds.), Seymour Island Geology and Paleontology. Geological Society of America Memoir, 169.CrossRefGoogle Scholar
Harwood, D. M., and Gersonde, R. 1990. Lower Cretaceous diatoms from ODP Leg 113 Site 693 (Weddell Sea). Part 2: Resting spores, Chrysophycean cysts, and endoskeletal dinoflagellate, and notes on the origin of diatoms, p. 403426. In Barker, P. F. et al. (eds.), Proceedings of the Ocean Drilling Program, Science Results, 113. Ocean Drilling Program, College Station, Texas.Google Scholar
Hasle, G. R., and Syvertsen, E. E. 1985. Thalassiosiropsis, a new diatom genus from the fossil records. Micropaleontology, 31:8291.Google Scholar
Hollis, C. J., Rodgers, K. A., and Parker, R. J. In press. Siliceous plankton bloom in the earliest Tertiary of Marlborough, New Zealand. Geology, 23.2.3.CO;2>CrossRefGoogle Scholar
Jousé, A. P. 1948. Dotretichnye diatomovye Vodorosli [Pre-Tertiary diatom algae]. Botanicheskii Zhurnal, 33:345356. (In Russian.) Google Scholar
Jousé, A. P. 1978. Diatom biostratigraphy on the generic level. Micropaleontology, 24: 316326.Google Scholar
Kitchell, J. A., Clark, D. L. D. L., and Gombos, A. M. Jr. 1986. Biological selectivity of extinction: a link between background and mass extinction. Palaios, 1:504511.Google Scholar
Kociolek, J. P., and Stoermer, E. F. 1989. Chromosome numbers in diatoms: a review. Diatom Research, 1:4754.Google Scholar
Kociolek, J. P., Theriot, E. C., and Williams, D. M. 1989. Inferring diatom phylogeny: a cladistic perspective. Diatom Research, 2:289300.Google Scholar
Lohman, K. E., and Andrews, G. W. 1968. Late Eocene non-marine diatoms from the Beaver Divide area. U.S. Geological Survey Professional Paper, 593E:126.Google Scholar
Long, J. A., Fuge, D. P., and Smith, J. 1946. Diatoms of the Moreno Shale. Journal of Paleontology, 20:89118.Google Scholar
Mann, D. G. 1984. An ontogenetic approach to diatom systematics, p. 113141. In Mann, D. G. (ed.), Proceedings of the 7th International Diatom Symposium. O. Koeltz Scientific Books, Koenigstein, Germany.Google Scholar
Mann, D. G., and Marchant, H. J. 1989. The origin of the diatom and its life cycle, p. 307323. In Green, J. C. et al. (eds.), The Chromophyte Algae: Problems and Perspectives. Oxford University Press, New York.Google Scholar
Martinez Macchiavello, J. C. 1987. Bioestratigrafia diatomica de un perfil del Cretacico Superior de la Isla Vicecomodoro Marambio, Antartida. Ameghiniana, 24:277288.Google Scholar
Medlin, L. K., Williams, D. M. D. M., and Sims, P. A. 1993. The evolution of the diatoms (Bacillariophyta). I. Origin of the group and assessment of the monophyly of its major divisions. European Journal of Phycology, 28:261275.Google Scholar
Moshkovitz, S., Erlich, A., and Soudry, D. 1983. Siliceous microfossils of the Upper Cretaceous Mishash Formation, central Negev, Israel. Cretaceous Research, 4:73194.Google Scholar
Nikolaev, V. A. 1984. On the importance of the areole structure for the taxonomy of diatom algae (Bacillariophyta). Botanicheskii Zhurnal, 69:10401046. (In Russian.) Google Scholar
Nikolaev, V. A. 1988. A system of the class Centrophyceae (Bacillariophyta). Botanicheskii Zhurnal, 73:486496. (In Russian.) Google Scholar
Nikolaev, V. A. 1990. The system of centric diatoms, p. 1722. In Simola, H. (ed.), Proceedings of the 10th International Diatom Symposium, Joensu, Finland 1988. O. Koeltz Scientific Books, Koenigstein, Germany.Google Scholar
Nikolaev, V. A. 1993. The “pore” apparatus of centric diatoms: description of terms. Beihefte, Nova Hedwigia, 106:3342.Google Scholar
Nikolaev, V. A., and Harwood, D. M. 1994. Morphology and taxonomic position of the Cretaceous diatom genus Pomphodiscus Barker et Meakin. Abstracts 13th International Diatom Symposium, Italy, p. 75.Google Scholar
Nikolaev, V. A., and Harwood, D. M. In press. New process, genus and family of Lower Cretaceous diatoms from Australia. Diatom Research, 11.Google Scholar
Olshtynskaja, A. 1990. Morphology of the diatom genus Pseudopodosira , p. 93100. In Simola, H. (ed.), Proceedings of the 10th International Diatom Symposium, Joensu, Finland 1988. O. Koeltz Scientific Books, Koenigstein, Germany.Google Scholar
Philippe, H, Sorhannus, U., Baroin, A., Perasso, R., Gasse, F., and Adoutte, A. 1994. Comparison of molecular and paleontological data in diatoms suggests a major gap in the fossil record. Journal of Evolutionary Biology, 7:247265.CrossRefGoogle Scholar
Pickett-Heaps, J. D., Schmid, A.-M. M., and Edgar, L. 1990. The cell biology of diatom valve formation. Progress in Phycological Research, 7:1168.Google Scholar
Preisig, H. R. 1994. Siliceous structures and silicification in flagellated protists. Protoplasma, 181:2942.CrossRefGoogle Scholar
Proschkina-Lavrenko, A. I. 1974. On the taxonomy of diatoms (Bacillariophyta). Botanicheskii Zhurnal, 59:895901.Google Scholar
Ricard, M. 1987. Diatomophycées. In Sourina, A. (ed.), Atlas du Phytoplankton Marin, Vol. 2., 297 p., Editions du Centre National de la Recherche Scientifique, Paris.Google Scholar
Ross, R., and Sims, P. A. 1972. The fine structure of the frustule in centric diatoms: a suggested terminology. British Phycological Journal, 7:139163.Google Scholar
Ross, R., Cox, E. J., Karayeva, N. I., Mann, D. G., Paddock, T. B. B., Simonsen, R., and Sims, P. A. 1979. An amended terminology for the siliceous components of the diatom cell. Nova Hedwigia, Beihefte, 64:513533.Google Scholar
Rothpletz, A. 1896. Über die Flysch-Fucoiden und einige andere fossile Algen, sowie über liasische, Diatomeen führende Hornschwämme. Zeitschrift Deutsch Geolog. Gesellschaft, 48:854914.Google Scholar
Rothpletz, A. 1900. Über einen neuen jurassichen Hornschwämme und die darin eingeschlossenen Diatomeen. Zeitschrift Deutsch Geolog. Gesellschaft, 52:154160.Google Scholar
Round, F. E. 1981a. Some aspects of the origin of diatoms and their subsequent evolution. Biosystems, 14:483486.Google Scholar
Round, F. E. 1981b. Morphology and phyletic relationships of the silicified algae and the archetypal diatom; monophyly or polyphyly, p. 97128. In Simpson, T. L. and Volcani, B. E. (eds.), Silicon and Siliceous Structures in Biological Systems. Springer-Verlag, New York.CrossRefGoogle Scholar
Round, F. E., and Crawford, R. M. 1981. The lines of evolution of the Bacillariophyta. I. Origin. Proceedings of the Royal Society of London, Series B., 211:237260.Google Scholar
Round, F. E., and Crawford, R. M. 1984. The lines of evolution of the Bacillariophyta, II. The centric series. Proceedings of the Royal Society of London, Series B., 221:169188.Google Scholar
Round, F. E., Crawford., R. M., and Mann, D. G. 1990. The Diatoms: Biology and Morphology of the Genera. Cambridge University Press, Cambridge, 747 p.Google Scholar
Round, F. E., Crawford., R. M., and Sims, P. A. 1981. The distribution of diatom genera in marine and freshwater environments and some evolutionary considerations, p. 301320. In Ross, R. (ed.) Proceedings of the Sixth Symposium on Recent and Fossil Diatoms. O. Koeltz Scientific Books, Koenigstein, Germany.Google Scholar
Schmid, A.-M. M. 1986. Organization and function of cell structures in diatoms and their morphogenesis, p. 293314. In Ricard, M. (ed.), Proceedings of the 8th International Diatom Symposium 1984. O. Koeltz Scientific Books, Koenigstein, Germany.Google Scholar
Schmid, A.-M. M. 1994. Aspects of morphogenesis and function of diatom cell walls with implications for taxonomy. Protoplasma, 181:4360.Google Scholar
Schrader, H.-J., and Schuette, G. 1981. Marine Diatoms, p. 11791232. In Emiliani, C. (ed.), The Sea, Vol. 7, The Oceanic Lithosphere. J. Wiley & Sons.Google Scholar
Semina, H. J., and Beklemishev, C. W. 1981. A promorphological approach to diatom cell structure, p. 211230. In Ross, R., (ed.) Proceedings of the Sixth Symposium on Recent and Fossil Diatoms. O. Koeltz Scientific Books, Koenigstein, Germany.Google Scholar
Simonsen, R. 1972. Ideas for a more natural system of the centric diatoms. Beihefte, Nova Hedwigia, 39:3754.Google Scholar
Simonsen, R. 1979. The diatom system: ideas on phylogeny. Bacillaria, 2:971.Google Scholar
Sims, P. A. 1986. Sphynctolethus Hanna, Ailuretta, gen. nov. and evolutionary trends within the Hemiauloideae. Diatom Research, 1:241269.CrossRefGoogle Scholar
Sims, P. A. 1988. The fossil genus Trochosira, its morphology, taxonomy and systematics. Diatom Research, 3:245257.Google Scholar
Sims, P. A. 1989. Some Cretaceous and Paleogene species of Coscinodiscus: a micromorphological and systematic study. Diatom Research, 4:351371.Google Scholar
Sims, P. A. 1994a. Benetorus, Gladiopsis and related genera from the Cretaceous. Diatom Research, 9:165187.CrossRefGoogle Scholar
Sims, P. A. 1994b. Skeletonemopsis, a new genus based on the fossil species of the genus Skeletonema . Grev. Diatom Research, 9:387410.CrossRefGoogle Scholar
Sims, P. A., and Hasle, G. R. 1987. Two Cretaceous Stellarima species: S. steinyi and S. distincta; their morphology, paleogeography and phylogeny. Diatom Research, 2:229240.Google Scholar
Sims, P. A., and Ross, R. 1988. Some Cretaceous and Paleocene Trinacria (diatom) species. Bulletin of the British Museum (Natural History), Botany Series, 18:275322.Google Scholar
Smetacek, V. S. 1985. Role of sinking in diatom life-history cycles: ecological, evolutionary and geological significance. Marine Biology, 84:239251.Google Scholar
Sorhannus, U. 1993. The sister-group of diatoms: an analysis using a combined data set. Diatom Research, 8:131143.Google Scholar
Sorhannus, U., Gasse, F., Perasso, R., and Tourancheau, A. B. 1995. A preliminary phylogeny of diatoms based on 28S ribosomal RNA sequence data. Phycologia, 34:6573.CrossRefGoogle Scholar
Strelnikova, N. I. 1966. Revision of Late Cretaceous representatives of the genera Gladius Schulz and Pyxilla Greville (Bacillariophyta). Novosti Sistematiki Nizshikh Rasteni; Botanicheskii Institut, Akademiia Nauk SSSR, 2336. (In Russian.) Google Scholar
Strelnikova, N. I. 1974. Diatomei pozdnego mela [Late Cretaceous diatoms of western Siberia], Akademia Nauk, SSSR, Roy 8, 202 p. (In Russian.) Google Scholar
Strelnikova, N. I. 1975. Diatoms of the Cretaceous period. Third Symposium on Recent and Fossil Diatoms (Kiel). Beihefte, Nova Hedwigia, 53:311321.Google Scholar
Strelnikova, N. I. 1990. Evolution of diatoms during the Cretaceous and Paleogene periods, p. 195204. In Simola, H. (ed.), Proceedings of the 10th International Diatom Symposium, Joensuu, Finland 1988. O. Koeltz Scientific Books, Koenigstein, Germany.Google Scholar
Strelnikova, N. I. 1991. Evolution of marine diatoms: Cretaceous and Paleogene. Algologia, 1:6572. (In Russian.) Google Scholar
Strelnikova, N. I. 1992. Paleogene Diatom Algae. St. Petersburg University Press, St. Petersburg, 312 p. (In Russian).Google Scholar
Strelnikova, N. I., and Martirosjan, G. N. 1981. Lower Cretaceous diatom algae from Stavropol. Viestnik LGU, Ser. Biologya, 3:5257. (In Russian).Google Scholar
Tappan, H. 1980. The Paleobiology of Plant Protists. W. H. Freeman and Co., San Francisco, 1,028 p.Google Scholar
Williams, D. M. 1991. Phylogenetic relationships among the Chromista: a review and preliminary analysis. Cladistics, 7:141156.Google Scholar
Zachos, J. C., Arthur, M. A., and Dean, W. E. 1989. Geochemical evidence for suppression of pelagic marine productivity at the Cretaceous/Tertiary boundary. Nature, 337:6164.Google Scholar