Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-25T06:04:40.877Z Has data issue: false hasContentIssue false

Bioerosion: Eating Rocks for Fun and Profit

Published online by Cambridge University Press:  17 July 2017

Richard G. Bromley*
Affiliation:
Geologisk Institut, University of Copenhagen, Øster Voldgade 10, 1350 Copenhagen K, Denmark

Extract

“Bioerosion” was coined by Neumann (1966) as an abbreviation of “biologic erosion”, and describes every form of biologic penetration into hard substrates, i.e., lithic (including skeletal) and woody. An extremely wide range of organisms causes bioerosion (see Bromley, 1970; Warme, 1970, 1975; Ekdale et al., 1984, p. 108–139). The work of these organisms produces trace fossils at all scales, from microscopic to gigantic. Minute scars etched by brachiopod pedicles have a paleoecologic story to tell; at another scale, cliff sapping by communities of boring bivalves and rasping limpets can cause major geographic changes. For example, the work of pholad bivalves played a leading role in the separation of England from the European continent; and had the great armada, sent against England by Philip II of Spain in 1588, not been annihilated by wood-boring shipworms (bivalves), the language of this short-course would have been Spanish.

Type
Research Article
Copyright
Copyright © 1992 Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akpan, E.B. 1984. Significance of algal borings and Acmaea grazing traces on molluscan shells from Ardyne (west Scotland) postglacial sediments. Palaeogeography, Palaeoclimatology, Palaeoecology, 47:233244.Google Scholar
Akpan, E.B., Farrow, G.E., and Morris, N. 1982. Limpet grazing on Cretaceous algal-bored ammonites. Palaeontology, 25:361367.Google Scholar
Baird, G.C., Brett, C.E., and Tomlinson, J.T. 1990. Host-specific acrothoracic barnacles on Middle Devonian platyceratid gastropods. Historical Biology, 4:221244.CrossRefGoogle Scholar
Brett, C.E. 1985. Tremnichnus: a new ichnogenus of circular-parabolic pits in fossil echinoderms. Journal of Paleontology, 59:625635.Google Scholar
Brett, C.E. 1988. Paleoecology and evolution of marine hard substrate communities: an overview. Palaios, 3:374378.CrossRefGoogle Scholar
Bromley, R.G. 1970. Borings as trace fossils and Entobia cretacea Portlock, as an example. In Crimes, T. P. and Harper, J. C. (eds.), Trace Fossils. Geological Journal, Special Issues, 3:4990.Google Scholar
Bromley, R.G. 1975. Comparative analysis of fossil and recent echinoid bioerosion. Palaeontology, 18:725739.Google Scholar
Bromley, R.G. 1978. Bioerosion of Bermuda reefs. Palaeogeography, Palaeoclimatology, Palaeoecology, 23:169197.CrossRefGoogle Scholar
Bromley, R.G. 1981. Concepts in ichnotaxonomy illustrated by small round holes in shells. Acta Geológica Hispanica, 16:5564.Google Scholar
Bromley, R.G. 1990. Trace Fossils: Biology and Taphonomy. Unwin Hyman, London, 280p.Google Scholar
Bromley, R.G. in press. Predation habits of octopus past and present and a new ichnospecies, Oichnus ovalis . Bulletin of the Geological Society of Denmark.Google Scholar
Bromley, R.G., and Allouc, J. in press. Trace fossils in bathyal hardgrounds, Mediterranean Sea. Ichnos, 2.CrossRefGoogle Scholar
Bromley, R.G., and Asgaard, U. in press. Endolithic community replacement on a Pliocene rocky coast. Ichnos, 2.Google Scholar
Bromley, R.G., and D'Alessandro, A. 1983. Bioerosion in the Pleistocene of southern Italy: ichnogenera Caulostrepsis and Maeandropolydora . Rivista di Paleontologia e Stratigrafia, 89:289309.Google Scholar
Bromley, R.G., and D'Alessandro, A. 1984. The ichnogenus Entobia from the Miocene, Pliocene and Pleistocene of southern Italy. Rivista di Paleontologia e Stratigrafia, 90:227296.Google Scholar
Bromley, R.G., and D'Alessandro, A. 1987. Bioerosion of the Plio-Pliestocene transgression of southern Italy. Rivista di Paleontologia e Stratigrafia, 93:379442.Google Scholar
Bromley, R.G., and D'Alessandro, A. 1990. Comparative analysis of bioerosion in deep and shallow water, pliocene to recent, Mediterranean Sea. Ichnos, 1:4349.Google Scholar
Bromley, R.G., Hanken, N.-M., and Asgaard, U. 1991. Shallow marine bioerosion: preliminary results of an experimental study. Bulletin of the Geological Society of Denmark, 38:8599.Google Scholar
Bromley, R.G., and Martinell, J. 1991. Centrichnus, new ichnogenus for centrically patterned attachment scars on skeletal substrates. Bulletin of the Geological Society of Denmark, 38:243252.CrossRefGoogle Scholar
Bromley, R.G., and Surlyk, F. 1973. Borings produced by brachiopod pedicles, fossil and recent. Lethaia, 6:349365.Google Scholar
Codez, J., and De Saint-Seine, R. 1957. Révision des cirripèdes acrothoraciques fossils. Bulletin de la Société Géologique de France, (6) 7:699719.CrossRefGoogle Scholar
Ekdale, A.A., Bromley, R.G., and Pemberton, S.G. 1984. Ichnology: trace fossils in sedimentology and stratigraphy. SEPM Short Course Notes, 15:1317.Google Scholar
Fagerstrom, J.A. 1988. A structural model for reef communities. Palaios, 3:217220.Google Scholar
Glaub, I. 1988. Mikrobohrspuren in verschiedenen Faziesbereichen des Oberjura Westeuropas (vorläufige Mitteilungen). Neues Jahrbuch für Paläontologie, Abhandlungen, 177:135164.Google Scholar
Golubic, S., Friedmann, I., and Schneider, J. 1981. The lithobiontic ecological niche, with special reference to microorganisms. Journal of Sedimentary Petrology, 51:475478.Google Scholar
Golubic, S., Friedmann, I., and Yun, Z. 1985. Phycological expertise in geological application. Hydrobiologia, 123:193198.CrossRefGoogle Scholar
Golubic, S., Friedmann, I., and Campbell, S.E. 1985. Early evolution of morphological complexity in prokaryotes (Cyanophyta, Cyanobacteria). In Mlikovsky, J. and Novak, V. J., eds., Evolution and Morphogenesis, 355368. Academia, Praha.Google Scholar
Green, J.W., Knoll, A.H., and Swett, K. 1988. Microfossils from oolites and pisolites of the Upper Proterozoic Eleonore Bay Group, Central East Greenland. Journal of Paleontology, 62:835852.Google Scholar
Kelly, S.R.A., and Bromley, R.G. 1984. Ichnological nomenclature of clavate borings. Palaeontology, 27:793807.Google Scholar
Kleemann, K.H. 1973. Der Gesteinsabbau durch Ätzmuscheln an Kalkküsten. Oecologia, 13:377395.Google Scholar
Knoll, A.H., Golubic, S., Green, J., and Swett, K. 1986. Organically preserved microbial endoliths from the late Proterozoic of East Greenland. Nature, 321:856857.CrossRefGoogle ScholarPubMed
Knoll, A.H., Swett, K., and Burkhardt, E. 1989. Paleoenvironmental distibution of microfossils and stromatolites in the Upper Proterozoic Backlundtoppen Formation, Spitsbergen. Journal of Paleontology, 63:129145.Google Scholar
Mayoral, E. 1987. Acción bioerosiva de Mollusca (Gastropoda, Bivalvia) en el Plioceno inferior de la Cuenca del Bajo Guadalquivir. Revista Española de Paleontologia, 2:4958.Google Scholar
Neumann, A.C. 1966. Observations on coastal erosion in Bermuda and measurements of the boring rate of the sponge Cliona lampa . Limnology and Oceanography, 11:92108.Google Scholar
Palmer, T. 1982. Cambrian to Cretaceous changes in hardground communities. Lethaia, 15:309323.Google Scholar
Pemberton, S.G., Jones, B., and Edgecombe, G. 1988. The influence of Trypanites in the diagenesis of Devonian stromatoporoids. Journal of Paleontology, 62:2231.Google Scholar
Pemberton, S.G., Kobluk, D.R., Yeo, R.K., and Risk, M.J. 1980. The boring Trypanites at the Silurian-Devonian disconformity in southern Ontario. Journal of Paleontology, 54:12581266.Google Scholar
Radtke, G. 1991. Die mikroendolithischen Spurenfossilien im Alt-Tertiär West-Europas und ihre palökologische Bedeutung. Courier Forschungsinstitut Senckenberg, 138:1150.Google Scholar
Robba, E., and Ostinelli, F. 1975. Studi paleoecologici sul Pliocene Ligure, I: Testimonianze di predazione sui molluschi pliocenici di Albenga. Rivista Italiana di Paleontologia e Stratigrafia, 81:309372.Google Scholar
Reitner, J., and Keupp, H. 1991. The fossil record of the Haplosclerid excavating sponge Aka de Laubenfels. In Reitner, J. and Keupp, H., eds., Fossil and Recent Sponges, 102120. Springer-Verlag, Berlin.Google Scholar
Saint-Seine, R. De. 1951. Un ciripède acrothoracique du Crétacé: Rogerella lecointrei nov. gen., nov. sp. Comptes Rendues de l'Academie de Science de Paris, 233:10511054.Google Scholar
Saint-Seine, R. De. 1954. Existence de cirripèdesacrothoraciques dès le Lias: Zapfella pattei nov. gen., nov. sp. Bulletin de la Société Géologique de France, (6) 4:447451.Google Scholar
Taylor, P.D. 1990a. Preservation of soft-bodied and other organisms by bioimmuration—a review. Palaeontology, 33:117.Google Scholar
Taylor, P.D. 1990b. Bioimmured ctenostomes from the Jurassic and the origin of the cheilostome Bryozoa. Palaeontology, 33:1934.Google Scholar
Vogel, K., Golubic, S., and Brett, C.E. 1987. Endolith associations and their relations to facies distribution in the Middle Devonian of New York State, U.S.A. Lethaia, 20:263290.Google Scholar
Voigt, E. 1965. Über parasitische Polychaeten in Kreide-Austern sowie einige andere in Muschelschalen bohrende Würmer. Paläontologisches Zeitschrift, 39:193211.Google Scholar
Voigt, E. 1968. Eine fossile Art von Arachnidium (Bryozoa, Ctenostomata) in der Unteren Kreide Norddeutschlands. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 125:401422.Google Scholar
Voigt, E. 1970. Endolithische Wurm-Tunnelbauten (Lapispecus cuniculus n.g. n.sp. und Dodecaceria [?] sp.) in Brandungsgeröllen der oberen Kreide in nördlichen Harzvorlande. Geologische Rundschau, 60:355380.Google Scholar
Voigt, E. 1972a. Amathia immurata n.sp., ein durch Bioimmuration erhaltenes ctenostomes Bryozoon aus der Maastrichter Tuffkreide. Paläontologisches Zeitschrift, 46:8792.CrossRefGoogle Scholar
Voigt, E. 1972b. Über Talpina ramosa v. Hagenow 1840, ein wahrscheinlich zu den Phoronidea gehöriger Bohrorganismus aus der Oberen Kreide, nebst Bemerkungen zu den übrigen bisher beschriebenen kretazischen “Talpina”-Arten . Nachrichten der Akademie der Wissenschaft Göttingen, 2. mathematische-physische Klasse, Jahrgang 1972:93126.Google Scholar
Voigt, E. 1975. Tunnelbaue rezenter und fossiler Phoronidea. Paläontologisches Zeitschrift, 49:135167.Google Scholar
Voigt, E. 1977. On grazing traces produced by the radula of fossil and recent gastropods and chitons. In Crimes, T.P. and Harper, J.C., eds., Trace Fossils 2. Geological Journal, Special Issues, 9:335346.Google Scholar
Warme, J. 1970. Traces and significance of marine rock borers. In Crimes, T.P., and Harper, J.C., eds., Trace Fossils. Geological Journal, Special Issues, 3:515526.Google Scholar
Warme, J. 1975. Borings as trace fossils, and the processes of marine bioerosion. In Frey, R.W., ed., The Study of Trace Fossils, 181227. Springer-Verlag, New York.Google Scholar