Published online by Cambridge University Press: 19 July 2017
Since the inception of their use in commercial micropaleontology, benthic foraminifera have proven to be eminently useful in the solution of geological problems. The utilitarian credentials of benthic foraminifera in estimating paleodepths from marsh through neritic environments with a reasonable degree of accuracy and to indicate approximate ages (viz. subdivision of series/epochs) have been established in both commercial and academic applications. Benthic foraminifera are generally more resistant to dissolution than planktonic foraminifera, and have wide distributions; many taxa have restricted stratlgraphic ranges, making them suitable for correlation and paleo-environmental studies. Yet, three problems have tended to limit the utility of benthic foraminifera: 1) there is a lack of uniformity in taxonomy (Boltovskoy, 1980; Douglas & Woodruff, 1982); 2) attempts to erect zonal schemes using benthic foraminifera have resulted in boundaries which are later proven to be diachronous relative to planktonic zonatlons (e.g. the California provincial stages, Poore, 1976); and 3) attempts to interpret paleodepths from deep-sea benthic foraminifera have produced widely-varying results. One could perhaps conclude, as Boltovskoy (1965a) did over a decade ago, that these problems indicate “…the near future of this science is rather bleak.”