Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-22T11:29:00.971Z Has data issue: false hasContentIssue false

Tonoplast and plasma membrane ATPases from maize lines of high or low vigour

Published online by Cambridge University Press:  19 September 2008

S. Sánchez-Nieto
Affiliation:
Depto de Bioquímica, División de Estudios de Posgrado, Facultad de Química, Edificio E Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 México, D. F.México
R. Rodríguez-Sotres
Affiliation:
Depto de Bioquímica, División de Estudios de Posgrado, Facultad de Química, Edificio E Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 México, D. F.México
P. González-Romo
Affiliation:
Depto de Bioquímica, División de Estudios de Posgrado, Facultad de Química, Edificio E Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 México, D. F.México
I. Bernal-Lugo
Affiliation:
Depto de Bioquímica, División de Estudios de Posgrado, Facultad de Química, Edificio E Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 México, D. F.México
M. Gavilanes-Ruíz*
Affiliation:
Depto de Bioquímica, División de Estudios de Posgrado, Facultad de Química, Edificio E Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 México, D. F.México
*
* Correspondence

Abstract

The effectiveness of ATPase in germinated seed may play an important role in the vigour of germination. The activities of tonoplast and plasma membrane ATPases in two maize (Zea mays L.) lines with different vigour of germination were determined. ATP hydrolysis was measured in microsomal fractions from coleoptiles along with the responses to specific inhibitors for the plasma membrane, tonoplast and mitochondrial ATPases as well as for acid phosphatase. Nitrate-sensitive ATPase activity was 1.5–3.0 times lower in the low-vigour line than in the high-vigour line. Kinetic analysis of ATP hydrolysis at different substrate concentrations revealed the existence of two enzymes in the microsomal fractions of the two lines. The Vmax of enzyme 1 in the low-vigour line was a third of that in the high-vigour line. This enzyme was identified as the nitrate-sensitive or tonoplast ATPase on the basis of measurements of ATP hydrolysis in the presence of specific inhibitors at high (8.12mm) and low (0.77mm) ATP concentrations.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdul-Baki, A.A. (1980) Biochemical aspects of seed vigour. HortScience 15, 765771.CrossRefGoogle Scholar
Brauer, D.S., Tu, S., Hsu, A.F. and Thomas, C.E. (1989) Kinetic analysis of proton transport by the vanadate-sensitive ATPase from maize root microsomes. Plant Physiology 89, 464471.CrossRefGoogle ScholarPubMed
Burris, J.J. (1976) Seed/seedling vigour and field performance. Journal of Seed Technology 1, 5874.Google Scholar
Ching, T.M. (1982) Adenosine triphosphate and seed vigour, pp. 487506 in Khan, A.A. (Ed), The physiology and biochemistry of seed development, dormancy and germination. Amsterdam, Elsevier Biomedical Press.Google Scholar
Gallagher, S.R. and Leonard, R.T. (1982) Effect of vanadate molybdate and azide on membrane-associated ATPase and soluble phosphatase activities of corn roots. Plant Physiology 70, 13351340.CrossRefGoogle ScholarPubMed
Gepstein, S., Jacob, M. and Taiz, L. (1982) Inhibition of stomatal opening in Vicia faba epidermal tissue by vanadate and abscisic acid. Plant Science Letters 28, 6367.CrossRefGoogle Scholar
González-Romo, P., Sánchez-Nieto, S. and Gavilanes-Ruíz, M. (1992) A modified colorimetric method for the determination of orthophosphate in the presence of high ATP concentrations. Analytical Biochemistry 200, 235238.CrossRefGoogle ScholarPubMed
Gronwald, J.W., Suhayda, C.G., Tal, M. and Shannon, M.C. (1990) Reduction in plasma membrane ATPase activity of tomato roots by salt stress. Plant Science 66, 145153.CrossRefGoogle Scholar
Iswar, S. and Palta, J.P. (1989) Plasma membrane ATPase activity following reversible and irreversible freezing injury. Plant Physiology 90, 10881095.CrossRefGoogle Scholar
Kasamo, K. (1988) Response of tonoplast and plasma membrane ATPases in chilling-sensitive and insensitive rice (Oryza sativa L.) culture cells to low temperature. Plant Cell Physiology 29, 10851094.Google Scholar
Kneebone, W.R. (1976) Some genetic aspects of seed quality. HortScience 15, 771774.Google Scholar
Kurkdjian, A. and Guern, J. (1989) Intracellular pH: measurement and importance in cell activity. Annual Review of Plant Physiology and Plant Molecular Biology 40, 271303.CrossRefGoogle Scholar
Maeshima, M. (1990) Development of vacuolar membranes during elongation of cells in mung bean hypocotyls. Plant Cell Physiology 31, 311317.Google Scholar
Mayer, A.M. and Poljakoff-Mayber, A. (1989) pp. 42, 43 and 238 in The germination of seeds, 4th edn. New York, Pergamon Press.Google Scholar
Mettler, I.J., Mandala, S. and Taiz, L. (1982) Characterization of in vitro proton pumping by microsomal vesicles isolated from corn coleoptiles. Plant Physiology 70, 17381741.CrossRefGoogle ScholarPubMed
O'Neill, S., Bennet, A.B. and Spanswick, R.M. (1983) Characterization of a NO3-sensitive H+ ATPase from corn roots. Plant Physiology 72, 837846.CrossRefGoogle Scholar
O'Sullivan, W.J. and Smitthers, G.W. (1979) Stability constants for biologically important metalligand complexes. Methods in Enzymology 63, 294336.CrossRefGoogle ScholarPubMed
Perlin, D.S. and Spanswick, R.M. (1981) Characterization of ATPase activity associated with corn leaf plasma membranes. Plant Physiology 68, 521526.CrossRefGoogle ScholarPubMed
Peterson, G.L. (1977) A simplification of the protein assay method of Lowry et al. which is more generally applicable. Analytical Biochemistry 83, 346356.CrossRefGoogle Scholar
Poole, R.J. (1988) Plasma membrane and tonoplast. pp. 83105, in Baker, D.A. and Hall, J.L. (Eds) Solute transport in plant cells and tissues. New York, Longman Scientific & Technical.Google Scholar
Rayle, D.L. and Cleland, R.E. (1977) Control of plant cell enlargment by hydrogen ions. Current Topics in Developmental Biology 11, 187214.CrossRefGoogle ScholarPubMed
Reich, J.G., Wangerman, G., Falk, M. and Rhode, K. (1972) A general strategy for parameter estimulation for isosteric and allosteric-kinetic data and binding measurements. European Journal of Biochemistry 26, 368379.CrossRefGoogle Scholar
Rodríguez-Sotres, R. and Muñoz-Clares, R.A. (1990) Kinetic evidence of the existence of a regulatory phosphoenol-pyruvate carboxylase. Archives of Biochemistry and Biophysics 276, 180190.CrossRefGoogle Scholar
Serrano, R. (1988) Structure and function of proton translocating ATPase in plasma membranes of plants and fungi. Biochimica et Biophysica Acta 947, 128.CrossRefGoogle ScholarPubMed
St Marty-Fleurence, F., Bourdil, I., Rossignol, M. and Blein, J.P. (1988) Active vanadate-sensitive H+ translocation in corn roots membrane vesicles and proteoliposomes. Plant Science 54, 177184.CrossRefGoogle Scholar
Sze, H. (1984) H+ -translocating ATPases of the plasma membrane and tonoplast of plant cells. Physiologia Plantarum 61, 683691.CrossRefGoogle Scholar
Tu, S., Nagahashi, G. and Sliwinski, B.J. (1984) Regulatory effects of adenosine diphosphate on the activity of the plasma membrane ATPase of corn roots. Biochemical and Biophysical Research Communications 122, 13671373.CrossRefGoogle ScholarPubMed
Tu, S., Nungesser, E. and Brauer, D. (1989) Characterization of the effects of divalent cations on the coupled activities of the H+ -ATPase in tonoplast vesicles. Plant Physiology 90, 16361643.CrossRefGoogle Scholar
Walker, R.R. and Leigh, R.A. (1981) Characterization of a salt-stimulated ATPase activity associated with vacuoles isolated from storage roots of red beet (Beta vulgaris L.) Planta 153, 140149.CrossRefGoogle ScholarPubMed
Yoshida, S., Matsuura, C. and Etani, S. (1989) Impairment of tonoplast H+ ATPase as an initial physiological response of cells to chilling in mung bean (Vigna radiata [L.] Wilezek). Plant Physiology 89, 634642.CrossRefGoogle Scholar