Published online by Cambridge University Press: 22 February 2007
A model has been developed to simulate the annual dormancy cycle of seeds of light-requiring species in the seed bank and the germination of exhumed seeds after irradiation. Simulation of dormancy and germination is based on a physiological model concerning the action of phytochrome in the seed. Dormancy is related to the amount of a hypothetical phytochrome receptor, which fluctuates in an annual pattern. Relief of dormancy is equivalent to an increase in the amount of receptor, and induction of dormancy is equivalent to a decrease in the amount of receptor. Annual changes in temperature are the driving force for annual changes in the amount of phytochrome receptor in seeds that are buried in the seed bank. From the average amount of phytochrome receptor in the seeds of a population, the model calculates the germination percentage that is reached when a seed sample from the population is exhumed, irradiated and incubated at a given temperature in darkness. In the model, relief of dormancy results in a widening of the range of temperatures over which germination can occur, and induction of dormancy results in a narrowing of this range. Model parameters were estimated by fitting the model to data from a burial experiment with seeds of Polygonum persicaria L., Chenopodium album L. and Spergula arvensis L. At regular time intervals during 3 years, subsamples of these seeds were exhumed and tested for germination in the laboratory. The simulation model gave a good description of the observed cyclic changes in germinability of exhumed seeds.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.