Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-24T01:35:37.521Z Has data issue: false hasContentIssue false

Seed germination, initial growth and leaf anatomy of seedlings of four tree species grown in mine tailings in Brazil

Published online by Cambridge University Press:  10 August 2022

Ana Lívia Martins Scarpa
Affiliation:
Departamento de Biologia, Campus Universitário, Universidade Federal de Lavras, Lavras, MG CEP 37200-000, Brazil
Filipe Almendagna Rodrigues
Affiliation:
Departamento de Biologia, Campus Universitário, Universidade Federal de Lavras, Lavras, MG CEP 37200-000, Brazil
Yasmini da Cunha Cruz
Affiliation:
Departamento de Biologia, Campus Universitário, Universidade Federal de Lavras, Lavras, MG CEP 37200-000, Brazil
Vinícius Politi Duarte
Affiliation:
Departamento de Biologia, Campus Universitário, Universidade Federal de Lavras, Lavras, MG CEP 37200-000, Brazil
Evaristo Mauro de Castro
Affiliation:
Departamento de Biologia, Campus Universitário, Universidade Federal de Lavras, Lavras, MG CEP 37200-000, Brazil
Moacir Pasqual
Affiliation:
Departamento de Biologia, Campus Universitário, Universidade Federal de Lavras, Lavras, MG CEP 37200-000, Brazil
Fabricio José Pereira*
Affiliation:
Universidade Federal de Alfenas, Instituto de Ciências da Natureza, Rua Gabriel Monteiro da Silva, n° 700, Centro, Alfenas, MG CEP 37130-001, Brazil
*
*Author for Correspondence: Fabricio José Pereira, E-mail: [email protected]

Abstract

The objective of this study was to test the tolerance of two species of Schinus and two species of Handroanthus cultivated in iron mining tailings from the rupture of the dam in Mariana, Brazil. Samples of mining tailings were collected 1 km away from the dam location and then dried, stored in plastic bags and further analysed for elemental composition. The seeds, later seedlings, were cultivated in the mining waste and in sand in two experiments separately and the experimental design was in a 2 × 3 factorial scheme (two substrates and three combinations of species), with six replications (n = 36). After 60 d of the establishment of the experiments, the germination data, biometric and anatomical measurements of the leaves were evaluated, in addition to the elemental characterization of the tailings. Mining tailings showed macro and micronutrients in addition to potentially toxic elements (As, Al, Cr, Pb and Ni). Seeds germinated and seedlings survived in the mining tailings. Mining tailings reduced the seedling emergence in Handroanthus, whereas it increased the emergence in S. molle and had no significant effect in S. terebinthifolia. Mining tailings reduced the number and length of roots in Schinus but increased these traits in Handroanthus species. Moreover, mining tailings reduced the fresh mass in Handroanthus but had no effect in the Schinus species. Mining tailings reduced the palisade and spongy parenchyma Handroanthus but only the spongy parenchyma was reduced in Schinus species. Therefore, mining tailings provided conditions for seed germination and seedling growth and Schinus species showed higher tolerance.

Type
Research Paper
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ali, H, Khan, E and Sajad, MA (2013) Phytoremediation of heavy metals – concepts and applications. Chemosphere 91, 869881.CrossRefGoogle ScholarPubMed
Andrade, GF, Paniz, FP, Martins, AC, Rocha, BA, Lobato, AKS, Rodrigues, JL, Cardoso-Gustayson, P, Masuda, HP and Batista, BL (2018) Agricultural use of Samarco's spilled mud assessed by rice cultivation: a promising residue use? Chemosphere 193, 892902.CrossRefGoogle ScholarPubMed
Anuradha, S and Rao, SSR (2007) The effect of brassinosteroids on radish (Raphanus sativus L.) seedlings growing under cadmium stress. Plant, Soil and Environment 53, 465472.CrossRefGoogle Scholar
Audebert, A and Fofana, M (2009) Rice yield gap due to iron toxicity in West Africa. Journal of Agronomy and Crop Science 195, 6676.CrossRefGoogle Scholar
Baroni, GR, Pereira, MP, Corrêa, FF, Castro, EM and Pereira, FJ (2020) Cadmium tolerance during seed germination and seedling growth of Schinus molle (Anacardiaceae). Floresta e Ambiente 27, e20170502.CrossRefGoogle Scholar
Brasil (2015) Laudo Técnico Preliminar: Impactos ambientais decorrentes do desastre envolvendo o rompimento da barragem de Fundão, em Mariana, Minas Gerais. Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis – IBAMA. Available at: http://www.ibama.gov.br/phocadownload/noticias_ambientais/laudo_tecnico_preliminar.pdfGoogle Scholar
Capuana, M (2011) Heavy metals and wood plants. Biotechnologies for phytoremediation. Forest 4, 715.Google Scholar
Claessen, MEC, Barreto, WO, De Paula, JL and Duarte, M (1997) Manual de métodos de análise de solo (2nd edn). Rio de Janeiro, Centro Nacional de Pesquisa de Solos, 2 ed. rev. atual.Google Scholar
Colmanetti, MAA and Barbosa, LM (2013) Fitossociologia e estrutura do estrato arbóreo de um reflorestamento com espécies nativas em Mogi-Guaçu, SP, Brasil. Hoehnea 40, 419435.CrossRefGoogle Scholar
Cruz, YC, Scarpa, ALM, Pereira, MP, Castro, EM and Pereira, FJ (2019) Growth of Typha domingensis as related to leaf physiological and anatomical modifications under drought conditions. Acta Physiologiae Plantarum 41, 19.CrossRefGoogle Scholar
Da Silva, AML, Costa, MFB, Leite, VG, Rezende, AA and Teixeira, SP (2009) Anatomia foliar com implicações taxonômicas em espécies de ipês. Hoehnea 36, 329338.CrossRefGoogle Scholar
De Oliveira, LM, Carvalho, MLM, Silva, TTA and Borges, DI (2005) Temperatura e regime de luz na germinação de sementes de Tabebuia impetiginosa (Martius ex A. P. de Candolle) Standley e T. serratifolius Vahl Nich. – Bignoniaceae. Ciência e Agrotecnologia 29, 642648.CrossRefGoogle Scholar
Ferreira, DF (2011) Sisvar: a computer statistical analysis system. Ciência e Agrotecnologia 35, 10391042.CrossRefGoogle Scholar
Guerinot, ML and Yi, Y (1994) Iron: nutritious, noxious, and not readily available. Plant Physiology 104, 815820.CrossRefGoogle Scholar
Jesus, CKC and Sánchez, LE (2016) The long post-closure period of a kaolin mine. Revista da Escola de Minas 66, 363368.CrossRefGoogle Scholar
Kabata-Pendias, A (2010) Trace elements in soils and plants (4th edn). Boca Raton, CRC Press.CrossRefGoogle Scholar
Kraus, JE and Arduin, M (1997) Manual básico em métodos em morfologia vegetal. Seropédica, EDUR.Google Scholar
Lorenzi, H (2001) Árvores Brasileiras: Manual de identificação e cultivo de plantas arbóreas nativas do Brasil. Nova Odessa, Instituto Plantarum.Google Scholar
Maia, GN (2004) Caatinga: árvores e arbustos e suas utilidades. São Paulo, D&Z.Google Scholar
Makhniova, S, Mohnachev, P and Ayan, S (2019) Seed germination and seedling growth of Scots pine in technogenically polluted soils as container media. Environmental Monitoring and Assessment 191, 113.CrossRefGoogle ScholarPubMed
Martins, L, Lago, AAD and Cicero, SM (2012) Conservação de sementes de ipê-roxo. Revista Brasileira de Engenharia Agrícola e Ambiental 16, 108112.CrossRefGoogle Scholar
McBride, MD (1994) Environmental chemistry of soils. New York, Oxford University Press.Google Scholar
O'Brien, TP, Feder, N and McCully, ME (1964) Polychromatic staining of plant cell walls by toluidine blue. Protoplasma 59, 368373.CrossRefGoogle Scholar
Oliver, MA (1997) Soils and human health: a review. European Journal of Soil Science 48, 573592.CrossRefGoogle Scholar
Pádua, MP, Caetano, AL, Polo, M, Pasqual, M and Pereira, FJ (2021) Ecophysiological responses of Copaifera langsdorffii grown in mining tailings under lower water availability. Water, Air and Soil Pollution 232, 57.CrossRefGoogle Scholar
Pereira, FJ and Polo, M (2011) Growth and ion accumulation in seedlings of Handroanthus serratifolius (VAHL.) cultivated in saline solution. Scientia Forestalis 39, 441446.Google Scholar
Pereira, FJ, Castro, EM, Oliveira, C, Pires, MF and Pasqual, M (2011) Mecanismos anatômicos e fisiológicos de plantas de aguapé para a tolerância à contaminação por Arsênio. Planta Daninha 29, 259267.CrossRefGoogle Scholar
Pereira, MP, Pereira, FJ, Corrêa, FF, Oliveira, C, Castro, EM and Barbosa, S (2013a) Lead tolerance during germination and early growth of Brazilian peppertree and the morpho-physiological modifications. Ciências Agrárias 56, 7279.Google Scholar
Pereira, MP, Pereira, FJ, Rodrigues, LCA, Barbosa, S and Castro, EM (2013b) Lead phytotoxicity on germination and early growth of lettuce as a function of root anatomy and cell cycle. Revista Agro@mbiente On-line 7, 3643.CrossRefGoogle Scholar
Pereira, MP, Corrêa, FF, Castro, EM, Cardoso, AA and Pereira, FJ (2016a) Seed germination of Schinus molle L. Anacardiaceae) as related to its anatomy and dormancy alleviation. Seed Science Research 26, 351361.CrossRefGoogle Scholar
Pereira, MP, Rodrigues, LCA, Corrêa, FF, Castro, EM, Ribeiro, VE and Pereira, FJ (2016b) Cadmium tolerance in Schinus molle tree is modulated by enhanced leaf anatomy and photosynthesis. Trees 30, 807814.CrossRefGoogle Scholar
Pereira, MP, Corrêa, FF, Castro, EM, Oliveira, JPV and Pereira, FJ (2017) Leaf ontogeny of Schinus molle L. plants under cadmium contamination: the meristematic origin of leaf structural changes. Protoplasma 254, 21172126.CrossRefGoogle Scholar
Pires, JMM, Lena, JC, Machado, CC and Pereira, RS (2003) Potencial poluidor de resíduo sólido da Samarco: Estudo de Caso da Barragem de Germano. Revista Árvore 27, 399–397.CrossRefGoogle Scholar
Ribeiro, LP, Leite Filho, AT, Silva, LBJ, Silva, VF and Lima e Borges, EE (2018) Physiological and biochemical changes in Brazilian pepper (Schinus terebinthifolia Raddi) seeds during storage. Revista Árvore 42, e420105.CrossRefGoogle Scholar
Ribeiro, VE, Pereira, MP, Castro, EM, Corrêa, FF, Cardoso, MDG and Pereira, FJ (2019) Enhanced essential oil and leaf anatomy of Schinus molle plants under lead contamination. Industrial Crops and Products 132, 9298.CrossRefGoogle Scholar
Richard, EC, Duarte, HA, Estrada, GCD, Bechtold, JP, Maioli, BG, Freitas, AHA, Warner, KE and Figueiredo, LHM (2019) Influence of Fundão tailings dam breach on water quality in the Doce River watershed. Integrated Environmental Assessment and Management 16, 583595.CrossRefGoogle Scholar
Rico, M, Benito, G, Salgueiro, AR, Díez-Herrero, A and Pereira, HG (2008) Reported tailings dam failures. A review of the European incidents in the worldwide context. Journal of Hazardous Materials 152, 846852.CrossRefGoogle ScholarPubMed
Rodrigues, RR and Leitão, HF (2000) Matas ciliares: conservação e recuperação. EDUSP, FAPESP, São Paulo.Google Scholar
Sahrawat, KL (2004) Iron toxicity in wetland rice and the role of other nutrients. Journal of Plant Nutrition 27, 14711504.CrossRefGoogle Scholar
Santos, KR, Pereira, MP, Ferreira, ACG, Rodrigues, LCA, Castro, EM, Corrêa, FF and Pereira, FJ (2015) Typha domingensis Pers. growth responses to leaf anatomy and photosynthesis as influenced by phosphorus. Aquatic Botany 122, 4753.CrossRefGoogle Scholar
Santos, PCS, Benedito, CP, Alves, TRC, Paiva, EP, Sousa, EC and Freires, ALA (2018) Water stress and temperature on germination and vigor of Handroanthus impetiginosus (Mart. ex DC). Revista Brasileira de Engenharia Agrícola e Ambiental 22, 349354.CrossRefGoogle Scholar
Silva, DC, Bellato, CR, Neto, JOM and Fontes, MPF (2018) Trace elements in river waters and sediments before and after a mining dam breach (Bento Rodrigues, Brazil). Quinica Nova 41, 857866.Google Scholar
Yousefi, AR, Rashidi, S, Moradi, P and Mastinu, A (2020) Germination and seedling growth responses of Zygophyllum fabago, Salsola kali L. and Atriplex canescens to PEG-induced drought stress. Environments 7, 107.CrossRefGoogle Scholar
Supplementary material: File

Martins Scarpa et al. supplementary material

Martins Scarpa et al. supplementary material

Download Martins Scarpa et al. supplementary material(File)
File 91.1 KB