Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-24T03:33:47.912Z Has data issue: false hasContentIssue false

Seed dormancy break and germination by a rare relict of the Würmian glaciation in the Iberian Peninsula: Euonymus latifolius (Celastraceae)

Published online by Cambridge University Press:  01 June 2023

A. Santiago*
Affiliation:
Botanic Garden of Castilla-La Mancha, Avda. de La Mancha s/n, Albacete 02006, Spain Botanic Institute of the University of Castilla-La Mancha, Avda. de La Mancha s/n, Albacete 02006, Spain
J. M. Herranz
Affiliation:
Botanic Garden of Castilla-La Mancha, Avda. de La Mancha s/n, Albacete 02006, Spain Botanic Institute of the University of Castilla-La Mancha, Avda. de La Mancha s/n, Albacete 02006, Spain
P. Ferrandis
Affiliation:
Botanic Garden of Castilla-La Mancha, Avda. de La Mancha s/n, Albacete 02006, Spain Botanic Institute of the University of Castilla-La Mancha, Avda. de La Mancha s/n, Albacete 02006, Spain
*
*Author for Correspondence: A. Santiago, E-mail: [email protected]

Abstract

Southern European peninsulas have repeatedly played notable roles as refuges in the natural history of flora during periods of glaciation. Euonymus latifolius (Celastraceae) is a relict species from the last Würmian glaciation in the Iberian Peninsula. It still lives with isolated populations in favourable, cool mountainous microhabitats, being an extremely rare, critically endangered species. These Iberian populations are often high-priority targets for conservation due to their long-term persistence and unique evolutionary trajectory. Previously, it has not been feasible to promote significant programmes for reintroduction and/or population reinforcement of this singular plant species due to the great difficulties of conventional propagation. In this study, we analysed the effects of temperature, light and gibberellic acid (GA3) on the germination responses of E. latifolius to develop an effective protocol for seed germination as a main outcome. The results are coherent with the climatic temperature conditions recorded broadly in the Iberian Peninsula in the past and in the current refuge locations for the taxon. The germination responses of E. latifolius are compatible with those of seeds with intermediate physiological dormancy. In particular, the seeds required a 10-week warm period (20/7°C + 15/4°C) followed by 20 weeks of cold period (5 + 1.5°C) to break dormancy and achieve germination values over 90%. GA3 also promoted germination (80%). Therefore, we developed the first effective protocol for promoting E. latifolius seed germination and, thus, sexual propagation, to facilitate urgent ex situ actions in the current climate change context.

Type
Research Paper
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agea, D, García-de Lucas, S and Lorite, J (2021) Regeneration of submediterranean species Euonymus latifolius (L.) Mill. at its southernmost limit in Europe. Mediterranean Botany 42, e68137.CrossRefGoogle Scholar
Bañares, A, Blanca, G, Güemes, J, Moreno, JC and Ortiz, S (2008) Lista roja 2008 de la flora vascular española. Dir. Gen. de Medio Natural y Política Forestal (Min. de Medio Ambiente, y Medio Rural y Marino). Madrid, SEBICOP.Google Scholar
Baskin, JM and Baskin, CC (2003) Classification, biogeography, and phylogenetic relationships of seed dormancy, pp 518–544 in Smith, RD, Dickie, JB, Linington, SH, Pritchard, HW and Probert, RJ (Eds), Seed conservation: turning science into practice, Kew, Royal Botanic Gardens.Google Scholar
Baskin, CC and Baskin, JM (2014) Seeds. Ecology, biogeography, and evolution of dormancy and germination (2nd edn). San Diego, Academic Press.Google Scholar
Benedí, C (1997) Euonymus L., pp. 175179 in Castroviejo, S, et al (Eds) Flora iberica, Plantas vasculares de la Península Ibérica e Islas Baleares 8, Madrid, Real Jardín Botánico, C.S.I.C.Google Scholar
Bennett, KD (1997) Evolution and ecology: the pace of life. Cambridge, Cambridge University Press.Google Scholar
Birks, HJB and Willis, KJ (2008) Alpines, trees, and refugia in Europe. Plant Ecology Diversity 1, 160.CrossRefGoogle Scholar
Blondel, J, Aronson, J, Bodiou, JY, Boeuf, G and Fontaine, C (2010) The Mediterranean region: biological diversity in space and time. Oxford and New York, Oxford University Press.Google Scholar
Cavieres, LA and Arroyo, MTK (2000) Seed germination response to cold stratification period and thermal regime in Phacelia secunda (Hydrophyllaceae) – altitudinal variation in the Mediterranean Andes of central Chile. Plant Ecology 149, 18.10.1023/A:1009802806674CrossRefGoogle Scholar
Cottrell, HJ (1947) Tetrazolium salt as a seed germination indicator. Nature 159, 748.10.1038/159748a0CrossRefGoogle ScholarPubMed
Drovetski, SV, Fadeev, IV, Raković, M, Lopes, RJ, Boano, G, Pavia, M, Koblik, EA, Lohman, YV, Redkin, YA, Aghayan, SA, Reis, S, Drovetskaya, SS and Voelker, G (2018) A test of the European Pleistocene refugial paradigm, using a Western Palaearctic endemic bird species. Proceedings: Biological Sciences 285, 18.Google ScholarPubMed
García, O and Sánchez, I (2007) Nueva población de Euonymus latifolius (L.) Mill. (Celastraceae) en la Provincia de Cuenca. Flora Montiberica 37, 4346.Google Scholar
Gilpin, ME and Soulé, ME (1986) Minimum viable populations: the processes of species extinctions, pp. 13/34 in Soulé ME (ed.), Conservation biology: the science of scarcity and diversity. Sinauer.Google Scholar
Gutiérrez, L, Blanca, G, Fabregat, C, López, S, Luque, P, Benavente, A, et al. (2004) Euonymus latifolius (L.) Miller, pp. 248249 in Bañares, A (Eds) Atlas y libro rojo de la flora vascular amenazada de España, 2ª edición, Madrid, Dirección General de Conservación de la Naturaleza.Google Scholar
Heredia, L, Carrión, JS, Jiménez, P, Collada, C and Gil, L (2007) Molecular and palaeoecological evidence for multiple glacial refugia for evergreen oaks on the Iberian Peninsula. Journal Biogeography 34, 15051517.CrossRefGoogle Scholar
Herranz, JM, Martín, J, Copete, MA, Monreal, JA and Ferrandis, P (2011) Evaluación de riesgos de extinción y prioridades para la conservación de la flora silvestre y vegetación en Castilla-La Mancha, pp. 103123 in Hernandez-Bermejo, JE; Herranz-Sanz, JM (Eds) Protección de la diversidad vegetal y de los recursos fitogenéticos en Castilla-La Mancha: La perspectiva existente y el compromiso del Jardín Botánico, Albacete, España, Instituto de Estudios Albacetenses ‘Don Juan Manuel’.Google Scholar
Herranz, JM, Copete, E and Ferrandis, P (2013) Non-deep complex morphophysiological dormancy in Narcissus longispathus (Amaryllidaceae): implications for evolution of dormancy levels within section Pseudonarcissi. Seed Science Research 23, 141155.10.1017/S0960258513000056CrossRefGoogle Scholar
Herrera, CM, Molero, J, Muñoz, J and Valdés, B (1999) Libro Rojo de la Flora Silvestre Amenazada de Andalucía, pp. 135–137. Tomo I: Especies en Peligro de Extinción. Sevilla, Consejería de Medio Ambiente, Junta de Andalucía.Google Scholar
Hewitt, GM (1996) Some genetic consequences of ice ages, and their role in divergence and speciation. Biological Journal of the Linnean Society 58, 247276.CrossRefGoogle Scholar
Holmes, GD and Buszewicz, G (1959) Forest tree seed investigations. London, Report on Forest Research, Forestry Commission.Google Scholar
Hong, TD, Linington, S and Ellis, RH (1996) Seed storage behavior: a compendium. Rome, International Plant Genetic Resources Institute.Google Scholar
López González, G (2001) Guía de los árboles y arbustos de la Península Ibérica y Baleares (especies silvestres y las cultivadas más comunes). España, Ediciones Mundi-Prensa.Google Scholar
Martín Herrero, J, Cirujano, S, Moreno, M, Peris, JB and Stübing, G (2003) La vegetación protegida en Castilla-La Mancha. Madrid, Junta de Comunidades de Castilla-La Mancha.Google Scholar
Moreno, JC (2011) Lista Roja de la Flora Vascular Española 2010. Actualización con los datos del Adenda 2010 al Atlas y Libro Rojo de la Flora Vascular Amenazada. Madrid, Dirección General de Conservación de la Naturaleza y Sociedad Española de Biología de la Conservación de Plantas.Google Scholar
Nikolaeva, MG, Daletzkaya, TV, Razumova, MV and Kofanova, NN (1973) Effects of gibberellin and kinetin on embryo growth and seed germination in spindle tree and Tatar maple. Soviet Plant Physiology 20, 600605.Google Scholar
Nogués-Bravo, D, Araújo, MB, Errea, MP and Martínez-Rica, JP (2007) Exposure of global mountain systems to climate warming during the 21st century. Global Environmental Change 17, 420428.CrossRefGoogle Scholar
Oliva, M, Palacios, D, Fernández-Fernández, JM, Rodríguez-Rodríguez, L, García-Ruiz, JM, Andrés, N, Carrasco, RM, Pedraza, J, Pérez-Alberti, A, Valcárcel, M and Hughes, PD (2019) Late quaternary glacial phases in the Iberian Peninsula. Earth-Science 192, 564600.Google Scholar
Peña, A, Feliu, JF, Lozano, JL and García, O (2018) Contribución al conocimiento de la distribución y demografía de Euonymus latifolius (l.) Mill. (Celastraceae) en el sistema ibérico. Flora Montiberica 72, 816.Google Scholar
Pinedo, S (2013) Población, amenazas y distribución de Euonymus latifolius (L.) miller (Celastraceae) en la península Ibérica. Murcia, VI Congress of Plant Conservation Biology.Google Scholar
Rodríguez-Sánchez, F, Hampe, A, Jordano, P and Arroyo, J (2010) Past tree range dynamics in the Iberian Peninsula inferred through phylogeography and palaeodistribution modelling: A review. Review of Palaeobotany and Palynology 162, 507521.CrossRefGoogle Scholar
Rudolf, PO (1974) Euonymus L., pp. 393397 in Schopmeyer, CS (Eds) Seeds of woody plants in the United States. Agriculture Handbook No. 450, Washington DC, Forest Service, USDA.Google Scholar
Santiago, A, Herranz, JM, Copete, E and Ferrandis, P (2013) Species-specific environmental requirements to break seed dormancy: implications for selection of regeneration niches in three Lonicera (Caprifoliaceae) species. Botany 91, 225233.CrossRefGoogle Scholar
Santiago, A, Ahrazem, O, Gómez-Gómez, L, Copete, MA, Herranz, R and Ferrandis, P (2019) Climate-mediated selection, deep complex morphophysiological dormancy, embryo growth, interpopulation variability. Turkish Journal of Botany 43, 6.Google Scholar
Sanz, MJ and Galán, E (2020) Impactos y riesgos derivados del cambio climático en España. Oficina Española de Cambio Climático. Madrid, Ministerio para la Transición Ecológica y el Reto Demográfico.Google Scholar
Schönswetter, P, Stehlik, I, Holderegger, R and Tribsch, A (2005) Molecular evidence for glacial refugia of mountain plants in the European Alps. Molecular Ecology 14, 35473555.CrossRefGoogle ScholarPubMed
Taberlet, P, Fumagalli, L, Wust-Saucy, AG and Cosson, JF (1998) Comparative phylogeography and postglacial colonization routes in Europe. Molecular Ecology 7, 453464.CrossRefGoogle ScholarPubMed
Vandelook, F, Bolle, N and van Assche, JA (2007) Multiple environmental signals required for embryo growth and germination of seeds of Selinum carvifolia (L.) L. and Angelica sylvestris L. (Apiaceae). Seed Science Research 17, 283291.CrossRefGoogle Scholar
Vargas, P (2003) Molecular evidence for multiple diversification patterns of alpine plants in Mediterranean Europe. Taxon 52, 463476.CrossRefGoogle Scholar
Vogel, JC, Rumsey, FJ, Schneller, JJ, Barrett, JA and Gibby, M (1999) Where are the glacial refugia in Europe? Evidence from pteridophytes. Biological Journal of the Linnean Society 66, 2337.CrossRefGoogle Scholar