Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-28T01:00:22.987Z Has data issue: false hasContentIssue false

Relationship between seed desiccation sensitivity, seed water content at maturity and climatic characteristics of native environments of nine Coffea L. species

Published online by Cambridge University Press:  22 February 2007

Stéphane Dussert*
Affiliation:
IRD, GeneTrop, BP 5045, 34032 Montpellier Cedex 1, France
Nathalie Chabrillange
Affiliation:
IRD, GeneTrop, BP 5045, 34032 Montpellier Cedex 1, France
Florent Engelmann
Affiliation:
IPGRI, Via delle Sette Chiese 142, 00145 Rome,Italy
François Anthony
Affiliation:
CATIE, Apartado 59, 7170 Turrialba, Costa Rica
Jacques Louarn
Affiliation:
IRD, BP 434 Man, Côte-d’lvoire
Serge Hamon
Affiliation:
IRD, GeneTrop, BP 5045, 34032 Montpellier Cedex 1, France
*
*Correspondence Fax: +33-4-67-54-78-00 Email: [email protected]

Abstract

A broad variability for seed desiccation sensitivity, as quantified by the water content and the water activity at which half of the initial viability is lost, has been previously observed within nine African coffee species. In order to investigate if these different degrees of desiccation sensitivity correspond to an adaptive trait, additional data, such as the duration of seed development and seed water content at maturity, were measured for these species, and the relationships between these parameters and some climatic characteristics of their specific native environments were investigated. Since flowering in all coffee species occurs only a few days after the main rainfall marking the end of the dry season, simulations could be made, based on the continuous sequences of rainfall data compiled in databases of nine climatic stations, chosen for their appropriate location in the collecting areas. The simulations revealed a highly significant correlation between the duration of seed development and that of the wet season. Consequently, mature seeds are shed at the beginning of the following dry season. Moreover, the mean number of dry months that seeds have to withstand after shedding was significantly correlated with the parameters used to quantify seed desiccation sensitivity. By contrast, seed moisture content at maturity was not correlated with the level of seed desiccation tolerance. All these results are discussed on the basis of more detailed descriptions of the natural habitats of the coffee species studied.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akaffou, D.S. (1999) Etude des hybrides interspécifiques entre Coffea pseudozanguebariae et C. liberica et analyse des possibilités d'introgression. PhD Thesis, University of Abidjan, Côte-d'Ivoire.Google Scholar
Anthony, F. (1992) Les ressources génétiques des caféiers: collecte, gestion d'un conservatoire et évaluation de la diversité génétique. Paris, IRD Edition.Google Scholar
Anthony, F., Couturon, E. and de Namur, C. (1985) Les caféiers sauvages du Cameroun: résultats d'une mission de prospection réalisée par l'ORSTOM en 1983. pp. 495–505 in Proceedings of the 11th ASIC SymposiumLomé, Togo.Google Scholar
Berthaud, J. (1986) Les ressources génétiques pour l'amélioration des caféiers africains diploïdes. Paris, IRD Edition.Google Scholar
Berthaud, J. and Charrier, A. (1988) Genetic resources of Coffea. pp. 142in Clarke, R.J.; Macrae, R. (Eds) Coffee, Vol. 4, Agronomy. London, Elsevier Applied Science.Google Scholar
Berthaud, J. and Guillaumet, J.L. (1978) Les caféiers sauvages en Centrafrique. Résultats d'une mission de prospection (janvier-février 1975). Café Cacao Thé 22, 171186.Google Scholar
Berthaud, J., Anthony, F. and Lourd, M. (1983) Les caféiers sauvages de Tanzanie. Résultats d'une mission de prospection effectuée du 5 mars au 11 avril 1982. Café Cacao Thé 27, 245258.Google Scholar
Berthaud, J., Guillaumet, J.L., Le Pierrès, D. and Lourd, M. (1980) Les caféiers sauvages du Kenya: prospection et mise en culture. Café Cacao Thé 24, 101112.Google Scholar
Bridson, D.M. and Verdcourt, B. (1988) Coffea. pp. 703723In Polhill, R.M. (Ed.) Flora of tropical East Africa–Rubiaceae (Part 2). Rotterdam, Brookfield, Balkema.Google Scholar
Cambrony, H.R. (1988) Arabusta and other interspecific hybrids. pp. 263292in Clarke, R.J.; Macrae, R. (Eds) Coffee. Vol. 4. Agronomy. London, Elsevier Applied Science.Google Scholar
Charrier, A. and Berthaud, J. (1985) Botanical classification of coffee. pp. 1347in Clifford, M.N.; Willson, K.C. (Eds) Coffee. Botany, biochemistry and production of beans and beverage. Westport, Connecticut, AVI Publishing.Google Scholar
CIEH/ORSTOM (19731990) Précipitations journalières de l'origine des stations à 1990. Paris, France, IRD Editions.Google Scholar
Dussert, S., Chabrillange, N., Engelmann, F. and Hamon, S. (1999a) Quantitative estimation of seed desiccation sensitivity using a quantal response model: application to nine species of the genus Coffea L. Seed Science Research 9, 135144.CrossRefGoogle Scholar
Dussert, S., Lashermes, P., Anthony, F., Montagnon, C., Trouslot, P., Combes, M.C., Berthaud, J., Noirot, M. and Hamon, S. (1999b) Le caféier, Coffea canephora. pp. 175194in Hamon, P.; Seguin, M.; Perrier, X.; Glaszmann, J.C. (Eds) Diversité génétique des plantes tropicales cultivées. Montpellier, France, CIRAD.Google Scholar
Eira, M.T.S., Walters, C., Caldas, L.S., Fazuoli, L.C., Sampaio, J.B. and Dias, M.C. (1999) Tolerance of Coffea spp. seeds to desiccation and low temperature. Revista Brasileira de Fisiologia Vegetal 11, 97105.Google Scholar
Ellis, R.H., Hong, T.D. and Roberts, E.H. (1990) An intermediate category of seed storage behaviour? I. Coffee. Journal of Experimental Botany 41, 11671174.CrossRefGoogle Scholar
Hong, T.D. and Ellis, R.H. (1995) Interspecific variation in seed storage behaviour within two genera–Coffea and Citrus. Seed Science and Technology 23, 165181.Google Scholar
Hong, T.D. and Ellis, R.H. (1996) A protocol to determine seed storage behaviour. Rome, Italy, International Plant Genetic Resources Institute.Google Scholar
Lashermes, P., Trouslot, P., Anthony, F., Combes, M.C. and Charrier, A. (1996) Genetic diversity for RAPD markers between cultivated and wild accessions of Coffea arabica. Euphytica 87, 5964.CrossRefGoogle Scholar
Leroy, T., Montagnon, C., Charrier, A. and Eskes, A.B. (1993) Reciprocal recurrent selection applied to Coffea canephora Pierre. I. Characterization and evaluation of breeding populations and value of intergroup hybrids. Euphytica 67, 113125.CrossRefGoogle Scholar
Roberts, E.H. and King, R.H. (1980) The characteristics of recalcitrant seeds. pp. 15in Chin, H.F.; Roberts, E.H. (Eds) Recalcitrant crop seeds. Kuala Lumpur, Tropical Press.Google Scholar
Thomas, A.S. (1944) The wild coffees of Uganda. Empire Journal of Experimental Agriculture 12, 112.Google Scholar
Vertucci, C.W. and Farrant, J.M. (1995) Acquisition and loss of desiccation tolerance. pp. 237271in Kigel, J.; Galili, G. (Eds) Seed development and germination. New York, Marcel Dekker.Google Scholar
von Teichman, I. and van Wyk, A.E. (1994) Structural aspects and trends in the evolution of recalcitrant seeds in dicotyledons. Seed Science Research 4, 225239.CrossRefGoogle Scholar
Vose, R.S., Schmoyer, R.L., Steurer, P.M., Peterson, T.C., Heim, R., Karl, T.R. and Eischeid, J. (1992) The global historical climatology network: long-term monthly temperature, precipitation, sea-level pressure, and station pressure data. Oak Ridge, Tenessee, Carbon Dioxide Information Analysis Center.CrossRefGoogle Scholar