Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-02T19:52:09.817Z Has data issue: false hasContentIssue false

Phenotyping for resistance to pre-harvest sprouting in grain sorghum

Published online by Cambridge University Press:  28 April 2021

María Verónica Rodríguez*
Affiliation:
IFEVA, Universidad de Buenos Aires, CONICET, Facultad de Agronomía. Av. San Martín 4453, C1417DSE Ciudad Autónoma de Buenos Aires, Argentina Cátedra de Fisiología Vegetal, Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martín 4453, C1417DSECiudad Autónoma de Buenos Aires, Argentina
Gonzalo Joaquín Arata
Affiliation:
IFEVA, Universidad de Buenos Aires, CONICET, Facultad de Agronomía. Av. San Martín 4453, C1417DSE Ciudad Autónoma de Buenos Aires, Argentina Cátedra de Cultivos Industriales, Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martín 4453, C1417DSECiudad Autónoma de Buenos Aires, Argentina
Sandra Mabel Díaz
Affiliation:
Cátedra de Fisiología Vegetal, Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martín 4453, C1417DSECiudad Autónoma de Buenos Aires, Argentina
Santiago Rentería
Affiliation:
Advanta Semillas SACI, Estación Experimental, Venado Tuerto, Santa Fe, Argentina
Roberto L. Benech-Arnold
Affiliation:
IFEVA, Universidad de Buenos Aires, CONICET, Facultad de Agronomía. Av. San Martín 4453, C1417DSE Ciudad Autónoma de Buenos Aires, Argentina Cátedra de Cultivos Industriales, Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martín 4453, C1417DSECiudad Autónoma de Buenos Aires, Argentina
*
Author for Correspondence: María Verónica Rodríguez, E-mail: [email protected]

Abstract

Pre-harvest sprouting (PHS) is a common threat to cereal crops in which the grain maturation phase takes place under rainy, moist conditions. Susceptibility to PHS is higher in sorghum genotypes displaying low levels of seed dormancy before harvest maturity. Other attributes such as glume or panicle morphology may also affect susceptibility to PHS. Breeding for resistance to PHS in grain sorghum requires the identification of grain physiological and morphological attributes affecting this trait, and a protocol for phenotyping and rating genotypes according to their susceptibility to PHS. In this work, we tested germination under laboratory conditions using detached grains and intact panicles for a panel of 20 sorghum genotypes including 11 parental lines, 6 hybrids and 3 reference inbred lines with contrasting PHS response. Records for natural sprouting in the field for these genotypes were also included in the analysis. Multivariate analyses of germination data allowed separation of genotypes into two major categories (resistant and susceptible to PHS). Laboratory germination data correlated significantly with PHS in the field. In most genotypes, the glumes had a significant, inhibitory effect on germination. The low levels of grain dormancy were observed among high tannin backgrounds, and vice versa, indicating that a pigmented testa alone does not provide resistance to PHS. Altogether, the phenotyping protocol allowed the classification of sorghum genotypes according to their susceptibility to PHS and the identification of different attributes useful for breeding for PHS resistance in this crop.

Type
Research Paper
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ainsworth, EA and Gillespie, KM (2007) Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin–Ciocalteu reagent. Nature Protocols 2, 877.CrossRefGoogle ScholarPubMed
Benech-Arnold, RL and Rodríguez, MV (2018) Pre-harvest sprouting and grain dormancy in Sorghum bicolor: what have we learned? Frontiers in Plant Science. doi:10.3389/fpls.2018.00811.CrossRefGoogle ScholarPubMed
Benech-Arnold, RL, Fenner, M and Edwards, PJ (1991) Changes in germinability, ABA levels and ABA embryonic sensitivity in developing seeds of Sorghum bicolor induced by water stress under grain filling. New Phytologist 118, 339347.CrossRefGoogle ScholarPubMed
Benech-Arnold, RL, Rodriguez, MV, Sánchez, RA, Carrari, F, Perez-Flores, LJ, Osuna-Fernández, HR, Iusem, ND, Lijavetzky, D, Stanelloni, R and Bottini, R (2003) Physiological and molecular aspects of the control of dormancy and germination in developing sorghum caryopses, pp. 1123 in Nicolás, G; Bradford, KJ; Come, D and Pritchard, HW (Eds) The biology of seeds: recent research advances. Oxon, UK, CAB International.Google Scholar
Bewley, JD (1997) Seed germination and dormancy. The Plant Cell 9, 10551066.CrossRefGoogle ScholarPubMed
Boddu, J, Svabek, C, Ibraheem, F, Jones, AD and Chopra, S (2005) Characterization of a deletion allele of a sorghum Myb gene, yellow seed1 showing loss of 3-deoxyflavonoids. Plant Science 169, 542552.CrossRefGoogle Scholar
Bodrone, MP, Rodríguez, MV, Arisnabarreta, S and Batlla, D (2017) Maternal environment and dormancy in sunflower: the effect of temperature during fruit development. European Journal of Agronomy 82, 93103.CrossRefGoogle Scholar
Cantoro, R, Fernández, LG, Cervigni, GDL, Rodríguez, MV, Gieco, JO, Paniego, N, Heinz, RA and Benech-Arnold, RL (2016) Seed dormancy QTL identification across a Sorghum bicolor segregating population. Euphytica 211, 4156.CrossRefGoogle Scholar
Casto, AL, Mattison, AJ, Olson, SN, Thakran, M, Rooney, WL and Mullet, JE (2019) Maturity2, a novel regulator of flowering time in Sorghum bicolor, increases expression of SbPRR37 and SbCO in long days delaying flowering. PLoS ONE 14, e0212154.CrossRefGoogle ScholarPubMed
Castor, L and Frederiksen, R (1977) Seed moulding of grain sorghum caused by Fusarium and Curvularia. Proceedings of the Annual Meeting of Phytopathological Society 4, 151.Google Scholar
Cheng, S, Sun, Y and Halgren, L (2009) The relationships of sorghum kernel pericarp and testa characteristics with tannin content. Asian Journal of Crop Science 1, 15.CrossRefGoogle Scholar
Colmer, J, O'Neill, CM, Wells, R, Bostrom, A, Reynolds, D, Websdale, D, Shiralagi, G, Lu, W, Lou, Q, Le Cornu, T, Ball, J, Renema, J, Flores Andaluz, G, Benjamins, R, Penfield, S and Zhou, J (2020) Seedgerm: a cost-effective phenotyping platform for automated seed imaging and machine-learning based phenotypic analysis of crop seed germination. New Phytologist 228, 778793.CrossRefGoogle ScholarPubMed
Dykes, L, Seitz, LM, Rooney, WL and Rooney, LW (2009) Flavonoid composition of red sorghum genotypes. Food Chemistry 116, 313317. doi:10.1016/j.foodchem.2011.03.020.CrossRefGoogle Scholar
Finch-Savage, WE and Leubner-Metzger, G (2006) Seed dormancy and the control of germination. New Phytologist 171, 501523.CrossRefGoogle ScholarPubMed
Flintham, JE and Gale, MD (1982) The tom thumb dwarfing gene, Rht3 in wheat. I. Reduced pre-harvest damage to breadmaking quality. Theoretical and Applied Genetics 62, 121126.CrossRefGoogle Scholar
Glennie, CW (1981) Preharvest changes in polyphenols, peroxidase, and polyphenol oxidase in sorghum grain. Journal of Agricultural and Food Chemistry 29, 3336.CrossRefGoogle ScholarPubMed
Gu, XY, Foley, ME, Horvath, DP, Anderson, JV, Feng, J, Zhang, L, Mowry, CR, Ye, H, Suttle, JC, Kadowaki, K and Chen, Z (2011) Association between seed dormancy and pericarp color is controlled by a pleiotropic gene that regulates abscisic acid and flavonoid synthesis in weedy red rice. Genetics 189, 15151524.CrossRefGoogle ScholarPubMed
Gualano, N, Carrari, F, Rodríguez, MV, Pérez-Flores, L, Sánchez, R, Iusem, N and Benech-Arnold, RL (2007) Reduced embryo sensitivity to abscisic acid in a sprouting-susceptible sorghum (Sorghum bicolor) variety is associated with altered ABA signaling. Seed Science Research 17, 8190.CrossRefGoogle Scholar
Harris, HB and Burns, RE (1970) Influence of tannin content on pre-harvest seed germination in sorghum. Agronomy Journal 62, 835836.CrossRefGoogle Scholar
Hilhorst, HWM (1995) A critical update on seed dormancy. I. Primary dormancy. Seed Science Research 5, 6173.CrossRefGoogle Scholar
Hilley, J, Truong, S, Olson, S, Morishige, D and Mullet, J (2016) Identification of Dw1, a regulator of sorghum stem internode length. PLoS ONE 11, e0151271. doi:10.1371/journal.pone.0151271.CrossRefGoogle ScholarPubMed
Himi, E and Noda, K (2005) Red grain color gene (R) of wheat is a Myb-type transcription factor. Euphytica 143, 239242.CrossRefGoogle Scholar
Hirano, K, Kawamura, M, Araki-Nakamura, S, Fujimoto, H, Ohmae-Shinohara, K, Yamaguchi, M, Fujii, A, Sasaki, H, Kasuga, S and Sazuka, T (2017) Sorghum DW1 positively regulates brassinosteroid signaling by inhibiting the nuclear localization of BRASSINOSTEROID INSENSITIVE 2. Scientific Reports 7, 126. doi:10.1038/s41598-017-00096-wCrossRefGoogle ScholarPubMed
House, LR (1985) A guide to sorghum breeding (2nd edn). Patancheru, AP, India, International Crops Research Institute for the Semi-Arid Tropics.Google Scholar
Kambal, AE and Bate-Smith, EC (1976) A genetic and biochemical study on pericarp pigments in a cross between two cultivars of grain sorghum, Sorghum bicolor. Heredity 37, 413416.CrossRefGoogle Scholar
Klein, RR, Miller, FR, Dugas, DV, Brown, PJ, Burrell, AM and Klein, PE (2015) Allelic variants in the PRR37 gene and the human-mediated dispersal and diversification of sorghum. Theoretical and Applied Genetics 128, 16691683. doi:10.1007/s00122-015-2523CrossRefGoogle ScholarPubMed
Li, C, Ni, P, Francki, M, Hunter, A, Zhang, Y, Schibeci, D, Li, H, Tarr, A, Wang, J, Cakir, M, et al. (2004) Genes controlling seed dormancy and pre-harvest sprouting in a rice-wheat-barley comparison. Functional and Integrative Genomics 4, 8493.CrossRefGoogle Scholar
Mofokeng, AM, Shimelis, HA and Laing, MD (2017) Agromorphological diversity of South African sorghum genotypes assessed through quantitative and qualitative phenotypic traits. South African Journal of Plant and Soil. doi:10.1080/02571862.2017.1319504CrossRefGoogle Scholar
Morris, GP, Ramu, P, Deshpande, SP, Hash, CT, Shah, T, Upadhyaya, HD, Riera-Lizarazu, O, Brown, PJ, Acharya, CB, Mitchell, SE, Harriman, J, Glaubitz, JC, Buckler, ES and Kresovich, S (2013) Population genomic and genome-wide association studies of agroclimatic traits in sorghum. Proceedings of the National Academy of Sciences of the United States of America 110, 453458.CrossRefGoogle ScholarPubMed
Nakamura, S (2018) Grain dormancy genes responsible for preventing pre-harvest sprouting in barley and wheat. Breeding Science 68, 295304.CrossRefGoogle ScholarPubMed
Nakamura, S, Abe, F, Kawahigashi, H, Nakazono, K, Tagiri, A, Matsumoto, T, Utsugi, S, Ogawa, T, Handa, H, Ishida, H, Mori, M, Kawaura, K, Ogihara, Y and Miura, H (2011) A wheat homolog of MOTHER OF FT AND TFL1 acts in the regulation of germination. Plant Cell 23, 32153229.CrossRefGoogle ScholarPubMed
Paterson, AH, Bowers, JE, Bruggmann, R, Dubchak, I, Grimwood, J, Gundlach, H, et al. (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457, 551556.CrossRefGoogle ScholarPubMed
Quinby, JR and Karper, RE (1961) Inheritance of height in sorghum. Agronomy Journal 46, 211216.CrossRefGoogle Scholar
R Core Team (2013) R: a language and environment for statistical computing. Vienna, Austria, R Foundation for Statistical Computing. Available at: http://www.R-project.org/Google Scholar
Rodríguez, MV, González Martín, J, Insausti, P, Margineda, JM and Benech-Arnold, RL (2001) Predicting pre-harvest sprouting susceptibility in barley: a model based on temperature during grain filling. Agronomy Journal 93, 10711079.CrossRefGoogle Scholar
Rodríguez, MV, Mendiondo, GM, Maskin, L, Gudesblat, GE, Iusem, ND and Benech-Arnold, RL (2009) Expression of ABA signalling genes and ABI5 protein levels in imbibed Sorghum bicolor caryopses with contrasting dormancy and at different developmental stages. Annals of Botany 104, 975985.CrossRefGoogle ScholarPubMed
Rodríguez, MV, Mendiondo, GM, Cantoro, R, Auge, GA, Luna, V, Masciarelli, O and Benech-Arnold, RL (2012) Expression of seed dormancy in grain sorghum lines with contrasting pre-harvest sprouting behavior involves differential regulation of gibberellin metabolism genes. Plant & Cell Physiology 53, 6480.CrossRefGoogle ScholarPubMed
Rodríguez, MV, Barrero, JM, Corbineau, F, Gubler, F and Benech-Arnold, RL (2015) Dormancy in cereals (not too much, not so little): about the mechanisms behind this trait. Seed Science Research 25, 99119.CrossRefGoogle Scholar
Steinbach, HS, Benech-Arnold, RL, Kristof, G, Sánchez, RA and Marcucci-Poltri, S (1995) Physiological basis of pre-harvest sprouting resistance in Sorghum bicolor (L.) Moench. ABA levels and sensitivity in developing embryos of sprouting-resistant and sprouting-susceptible varieties. Journal of Experimental Botany 46, 701709.CrossRefGoogle Scholar
Steinbach, HS, Benech-Arnold, RL and Sánchez, RA (1997) Hormonal regulation of dormancy in developing sorghum seeds. Plant Physiology 113, 149154.CrossRefGoogle ScholarPubMed
Stephens, JC, Miller, FR and Rosenow, DT (1967) Conversion of alien sorghums to early combine genotypes. Crop Science 7, 396. doi:10.2135/cropsci1967.0011183X000700040036x.CrossRefGoogle Scholar
Valencia, RC and Rooney, WL (2009) Genetic control of sorghum grain color. INTSORMIL Presentations, p. 10. Available at: http://digitalcommons.unl.edu/intsormilpresent/10Google Scholar
Vegis, A (1964) Dormancy in higher plants. Annual Review of PIant Physiology 15, 185224.CrossRefGoogle Scholar
Wang, J, Korkmaz, U, Guo, M, Pipatpongpinyo, W and Gu, XY (2020) Pyramiding seed dormancy genes to improve resistance of semi-dwarf varieties to pre-harvest sprouting in rice. Molecular Breeding 40, 93. doi:10.1007/s11032-020-01172-2.CrossRefGoogle Scholar
Waniska, RD, Hugo, LF and Rooney, LW (1992) Practical methods to determine the presence of tannins in sorghum. Journal of Applied Poultry Research 1, 122128.CrossRefGoogle Scholar
Waniska, ARD and Rooney, W (2002). Structure and chemistry of the sorghum caryopsis, pp. 4553 in Wayne Smith, C and Frederiksen, RA (Eds) Sorghum Origin, History, Technology, and Production. Wiley Series in Crop Science.Google Scholar
Wu, J, Kong, X, Wan, J, Liu, X, Zhang, X, Guo, X, Zhou, R, Zhao, G, Jing, R, Fu, X, and Jia, J (2011) Dominant and pleiotropic effects of a GAI gene in wheat results from lack of interaction between DELLA and GID1. Plant Physiology 157, 21202130.CrossRefGoogle ScholarPubMed
Wu, Y, Li, X, Xiang, W, Zhu, C, Lin, Z, Wu, Y, Li, J, Pandravada, S, Ridder, DD, Bai, G, Wang, ML, Trick, HN, Bean, SR, Tuinstra, MR, Tesso, TT and Yu, J (2012) Presence of tannins in sorghum grains is conditioned by different natural alleles of Tannin1. Proceedings of the National Academy of Sciences of the United States of America 109, 1028110286.CrossRefGoogle ScholarPubMed
Yamaguchi, M, Fujimoto, H, Hirano, K, Araki-Nakamura, S, Ohmae-Shinohara, K, Fujii, A, Tsunashima, M, Song, XJ, Ito, Y, Nagae, R, Wu, J, Mizuno, H, Yonemaru, J, Matsumoto, T, Kitano, H, Matsuoka, M, Kasuga, S and Sazuka, T (2016) Sorghum Dw1, an agronomically important gene for lodging resistance, encodes a novel protein involved in cell proliferation. Scientific Reports 6, 28366. https://doi.org/10.1038/srep28366.CrossRefGoogle ScholarPubMed
Ye, H, Beighley, DH, Feng, J and Gu, XY (2013) Genetic and physiological characterization of two clusters of quantitative trait loci associated with seed dormancy and plant height in rice. G3: GENES, GENOMES, GENETICS 3, 323331.CrossRefGoogle ScholarPubMed
Ye, H, Feng, J, Zhang, L, Zhang, J, Mispan, MS, Cao, Z, Beighley, DH, Yang, J, Gu, XY (2015) Map-based cloning of seed dormancy1–2 identified a gibberellin synthesis gene regulating the development of endosperm-imposed dormancy in rice. Plant Physiology 169, 21522165.Google ScholarPubMed
Supplementary material: File

Rodríguez et al. supplementary material

Rodríguez et al. supplementary material

Download Rodríguez et al. supplementary material(File)
File 928.3 KB