Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-18T22:08:21.607Z Has data issue: false hasContentIssue false

Individual crop size increases predispersal predation by beetles in a tropical palm

Published online by Cambridge University Press:  24 November 2020

Morgana Maria Arcanjo Bruno
Affiliation:
Departamento de Ecologia, Instituto de Ciências Biológicas, Universidade de Brasília, Brasilia, Distrito Federal, DF70910-970, Brazil
Klécia Gili Massi*
Affiliation:
Departamento de Ecologia, Instituto de Ciências Biológicas, Universidade de Brasília, Brasilia, Distrito Federal, DF70910-970, Brazil
Alexander V. Christianini
Affiliation:
Departamento de Ciências Ambientais, Universidade Federal de São Carlos, Campus Sorocaba, Sorocaba, SP18052-780, Brazil
John du Vall Hay
Affiliation:
Departamento de Ecologia, Instituto de Ciências Biológicas, Universidade de Brasília, Brasilia, Distrito Federal, DF70910-970, Brazil
*
Author for Correspondence: Klécia Gili Massi, E-mail: [email protected]

Abstract

Predispersal seed predation is one of the main causes of seed mortality in plant populations, contributing to decreased plant recruitment. Seed loss has previously been found to be related to crop size. Thus, we examined the influence of individual crop size on predispersal seed predation by beetles in the palm Syagrus flexuosa in the Brazilian savanna. The study was carried out in three tropical woodland savanna sites, where we sampled the total seed crop of 46 fruiting palms and checked the presence of beetle larvae inside all seeds per plant. We observed predispersal seed predation of S. flexuosa from all sites and a high variation in the number of seeds preyed on per individual palm. Crop size had a positive influence on the number of seeds lost to predispersal seed predators. Variations in levels of predispersal seed predation may also be accounted for by the reproductive phenology of S. flexuosa. If fruits are not available at the same time, less resource is available for predators and therefore a high proportion of seeds may be preyed on. Thus, our study demonstrates that an individual plant trait, crop size, is an important predictor of beetle seed damage per palm and a driver of the number of seeds lost to predispersal seed predators.

Type
Short Communication
Copyright
Copyright © The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Current address: Universidade Católica de Brasília, Programa de Educação Ambiental – PEA, Águas Claras, DF 71966-700, Brazil.

Current address: Universidade Estadual Paulista (Unesp), Instituto de Ciência e Tecnologia, São José dos Campos, SP 12247-004, Brazil.

References

Andersen, AN (1998) Insect seed predators may cause far greater losses then they appear to. Oikos 52, 337340.CrossRefGoogle Scholar
Barford, AS, Hagen, M and Borchsenius, F (2011) Twenty-five years of progress in understanding pollination mechanisms in palms (Arecaceae). Annals of Botany 108, 15031516.CrossRefGoogle Scholar
Brancalion, P, Novembre, A and Rodrigues, RR (2011) Seed development, yield and quality of two palm species growing in different tropical forest types in SE Brazil: implications for ecological restoration. Seed Science and Technology 39, 412424.CrossRefGoogle Scholar
Bruno, MMA, Massi, KG, Vidal, MM and Hay, JV (2019) Reproductive phenology of three Syagrus species (Arecaceae) in a tropical savanna in Brazil. Flora 252, 1825.CrossRefGoogle Scholar
Christianini, AV (2017) Crop size influences pre-dispersal seed predation in the Brazilian Cerrado. Acta Botanica Brasilica 32, 16.CrossRefGoogle Scholar
Crawley, MJ (2000) Seed predators and plant population dynamics, pp. 167182 in Fenner, M (Ed.), Seeds: the ecology of regeneration in plant communities. Oxford, CABI Publishing.CrossRefGoogle Scholar
Custódio, LN, Carmo-Oliveira, R, Mendes-Rodrigues, C and Oliveira, PE (2014) Pre-dispersal seed predation and abortion in species of Callisthene and Qualea (Vochysiaceae) in a Neotropical savanna. Acta Botanica Brasilica 28, 309320.CrossRefGoogle Scholar
De Steven, D, Windsor, DM, Putz, FE and De Léon, B (1987) Vegetative and reproductive phenologies of a palm assemblage in Panama. Biotropica 19, 342356.CrossRefGoogle Scholar
Frankie, GW, Baker, HG and Opler, PA (1974) Comparative phenological studies of trees in tropical wet and dry forests in the lowlands of Costa Rica. Journal of Ecology 62, 881913.CrossRefGoogle Scholar
Giombini, MA, Bravo, SP and Martínez, MF (2009) Seed dispersal of the palm Syagrus romanzoffiana by tapirs in the semi-deciduous atlantic forest of Argentina. Biotropica 41, 408413.CrossRefGoogle Scholar
Grenha, V, Macedo, MV and Monteiro, RF (2008) Predação de sementes de Allagoptera arenaria (Gomes) O'Kuntze (Arecaceae) por Pachymerus nucleorum Fabricius (Coleoptera, Chrysomelidae, Bruchinae). Revista Brasileira de Entomologia 52, 5056.CrossRefGoogle Scholar
Gripenberg, S (2018) Do pre-dispersal insect seed predators contribute to maintaining tropical forest plant diversity? Biotropica 50, 839845.CrossRefGoogle Scholar
Hay, JD, Bizerril, MX, Calouro, AM, Costa, EMN, Ferreira, AA, Gastal, MLA, Goes Júnior, CD, Manzan, DJ, Martins, CR, Monteiro, JMG, Oliveira, SA, Rodrigues, MCM, Seyffarth, JAS and Walter, BMT (2000) Comparação do padrão da distribuição espacial em escalas diferentes de espécies nativas do cerrado, em Brasília, DF. Brazilian Journal of Botany 23, 341347.CrossRefGoogle Scholar
Heisswolf, A, Obermaier, E and Poethke, HJ (2005) Selection of large host plants by oviposition by a monophagous leaf beetle: nutritional quality of enemy-free space? Ecological Entomology 30, 299306.CrossRefGoogle Scholar
Henderson, A (2002) Evolution and ecology of palms. New York, The New York Botanical Garden Press.Google Scholar
Henderson, A, Galeano, G and Bernal, R (1995) Field guide to the palms of the Americas. Princeton, Princeton University Press.CrossRefGoogle Scholar
Hubbell, SP (1980) Seed predation and the coexistence of tree species in tropical forests. Oikos 35, 214229.CrossRefGoogle Scholar
Janzen, DH (1967) Why mountain passes are higher in the tropics. The American Naturalist 101, 233249.CrossRefGoogle Scholar
Janzen, DH (1969) Seed eaters versus seed size, number, toxicity and dispersal. Evolution 23, 127.CrossRefGoogle ScholarPubMed
Janzen, DH (1970) Herbivores and the number of tree species in tropical forests. The American Naturalist 104, 501529.CrossRefGoogle Scholar
Janzen, DH (1971a) Seed predation by animals. Annual Review of Ecology Evolution and Systematics 2, 465492.CrossRefGoogle Scholar
Janzen, DH (1971b) Escape of Cassia grandis beans from predators in time and space. Ecology 25, 964979.CrossRefGoogle Scholar
Kelly, D and Sork, VL (2002) Mast seeding in perennial plants: why, how, where? Annual Review of Ecology Evolution and Systematics 33, 427447.CrossRefGoogle Scholar
Kolb, A, Ehrlén, J and Eriksson, O (2007) Ecological and evolutionary consequences of spatial and temporal variation in pre-dispersal seed predation. Perspectives in Plant Ecology, Evolution and Systematics 9, 79100.CrossRefGoogle Scholar
Kon, H, Noda, T, Terazawa, K, Koyama, H and Yasaka, M (2005) Evolutionary advantages of mast seeding in Fagus crenata. Journal of Ecology 93, 11481155.CrossRefGoogle Scholar
Lenza, E, Pinto, JRR, Pinto, AS, Maracahipes, L and Bruziguessi, EL (2011) Comparação da vegetação arbustivo-arbórea de uma área de cerrado rupestre na Chapada dos Veadeiros, Goiás e áreas de cerrado sentido restrito do Bioma Cerrado. Brazilian Journal of Botany 34, 247259.CrossRefGoogle Scholar
Louda, SM (1982) Distribution ecology: variation in plant recruitment over a gradient in relation to insect seed predation. Ecological Monographs 52, 2541.CrossRefGoogle Scholar
Martins, RC and Filgueiras, TS (2006) Arecaceae, pp. 4582 in Cavalcanti, TB (Ed.), Flora do Distrito Federal, Brasil, Vol. 5. Brasilia, EMBRAPA-Cenargen.Google Scholar
Mamede, MA (2008) Aspectos da ecologia reprodutiva de Syagrus flexuosa Mart. Becc.: Sucesso reprodutivo e persistência em áreas de Cerrado na região do DF. PhD Dissertation. Universidade de Brasília, Brasília, DF, Brasil.Google Scholar
Mendoza, I, Peres, CA and Morellato, LPC (2017) Continental-scale patterns and climatic drivers of fruiting phenology: a quantitative neotropical review. Global Planetary Change 148, 227241.CrossRefGoogle Scholar
Nimer, E (1989) Climatologia do Brasil. Rio de Janeiro, IBGE.Google Scholar
Noblick, LR (2017) A revision of the genus Syagrus (Arecaceae). Phytotaxa 294, 1262.CrossRefGoogle Scholar
Oliveira-Filho, AT, Shepherd, GJ, Martins, FR and Stubblebine, WH (1989) Environmental factors affecting physiognomic and floristic variation in an area of cerrado in central Brazil. Journal of Tropical Ecology 5, 413431.CrossRefGoogle Scholar
Pereira, ACF, Fonseca, FSA, Mota, GR, Fernandes, AKC, Fagundes, M, Reis-Júnior, R and Faria, ML (2014) Ecological interactions shape the dynamics of seed predation in Acrocomia aculeata (Arecaceae). PLoS One 9, e98026.CrossRefGoogle Scholar
Pilon, NAL, Udulutsch, RG and Durigan, G (2015) Padrões fenológicos de 111 espécies de Cerrado em condições de cultivo. Hoehnea 42, 425443.CrossRefGoogle Scholar
Prance, GT, Beentje, H, Dransfield, J and Johns, R (2000) The tropical flora remains undercollected. Annals of the Missouri Botanical Garden 87, 6771.CrossRefGoogle Scholar
Ramírez, N and Traveset, A (2010) Predispersal seed-predation by insects in the Venezuelan central plain: overall patterns and traits that influence its biology and taxonomic groups. Perspectives in Plant Ecology, Evolution and Systematics 12, 193209.CrossRefGoogle Scholar
Rathcke, B and Lacey, EP (1985) Phenological patterns of terrestrial plants. Annual Review of Ecology Evolution and Systematics 16, 179214.CrossRefGoogle Scholar
R Core Team (2013) R: a language and environment for statistical computing. Vienna, R Foundation for Statistical Computing. http://www.R-project.org/.Google Scholar
Rocha, KMR (2009) Biologia reprodutiva da palmeira licuri (Syagrus coronata (Mart.) Becc.) (Arecaceae) na ecorregião do Raso da Catarina, Bahia. 2009. Master Thesis. Universidade Federal Rural do Pernambuco, Recife, PE, Brasil.Google Scholar
Silva, LO, Costa, DA, Espírito Santo Filho, K, Ferreira, HD and Brandão, D (2002) Levantamento florístico e fitossociológico em duas áreas de cerrado sensu stricto no Parque Estadual da Serra de Caldas Novas, Goiás. Acta Botanica Brasilica 16, 4353.CrossRefGoogle Scholar
Thomas, R, Lello, J, Medeiros, R, Pollar, A, Robinson, P, Seward, A, Smith, J, Vafidis, J and Vaughan, I (2017) Data analysis with R statistical software: a guidebook for scientists. Cardiff, Eco-explore.Google Scholar
Traveset, A (1995) Spatio-temporal variation in pre-dispersal reproductive losses of a Mediterranean shrub, Euphorbia dendroides L. Oecologia 103, 118126.CrossRefGoogle ScholarPubMed
Xiao, Z, Zhang, Z and Wang, Y (2015) The effects of seed abundance on seed predation and dispersal by rodents in Castanopsis fargesii (Fagaceae). Plant Ecology 177, 249257.CrossRefGoogle Scholar
Zhang, J, Drummond, FA, Leibman, M and Hartke, A (1997) Insect predation of seeds and plant population dynamics. Maine Agricultural and Forest Experiment Station Technical Bulletin 1997, 163.Google Scholar