Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-24T07:50:53.007Z Has data issue: false hasContentIssue false

Habitat-related germination behaviour and emergence phenology in the woodland geophyte Anemone ranunculoides L. (Ranunculaceae) from northern Italy

Published online by Cambridge University Press:  01 September 2009

Andrea Mondoni*
Affiliation:
Dipartimento di Ecologia del Territorio, University of Pavia, Via S. Epifanio 14, I-27100Pavia, Italy
Robin Probert
Affiliation:
Seed Conservation Department, Royal Botanic Gardens, Kew, Wakehurst Place, Ardingly, West Sussex, RH17 6TN, UK
Graziano Rossi
Affiliation:
Dipartimento di Ecologia del Territorio, University of Pavia, Via S. Epifanio 14, I-27100Pavia, Italy
Fiona Hay
Affiliation:
Seed Conservation Department, Royal Botanic Gardens, Kew, Wakehurst Place, Ardingly, West Sussex, RH17 6TN, UK
*
*Correspondence Email: [email protected]

Abstract

This study examined whether the restricted habitat preference of the spring-flowering woodland geophyte Anemone ranunculoides L., compared with that of A. nemorosa growing in the same woodlands in northern Italy, could be explained by subtle differences in germination preference and emergence phenology. Immediately after harvest, seeds of A. ranunculoides were either sown on agar in the laboratory under simulated seasonal temperatures or placed in nylon mesh sachets and buried in the wild. Embryos, undifferentiated at the time of seed dispersal, grew during summer in the laboratory and in the wild, culminating in radicle emergence in the autumn, when temperatures fell to c. 15°C. Shoot emergence was delayed under natural conditions until soil temperature had dropped further to c. 10°C. Compared with populations of the closely related Anemone nemorosa L. occupying the same woodland habitat, which have been reported to have non-dormant radicles, A. ranunculoides displayed a narrower temperature tolerance for radicle emergence and high levels of germination were possible only after prolonged exposure to summer conditions, indicating physiological dormancy. However, unlike A. nemorosa, shoot emergence in A. ranunculoides was not dependent on winter temperatures, suggesting weaker epicotyl morphophysiological dormancy. Under a regime of diurnal temperature alternation, simulating the microclimate where there is little plant cover, germination failed almost completely; this could explain the absence of A. ranunculoides in open habitats.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abrami, G. (1971) Life cycle and temperature requirements of seven herbaceous species. Giornale Botanico Italiano 105, 295318.Google Scholar
Aeschimann, D., Lauber, K., Moser, D. and Theurillat, J.P. (2004) Flora Alpina. Bologna, Italy, Zanichelli.Google Scholar
Ali, N., Probert, R., Hay, F., Davies, H. and Stuppy, W. (2007) Post-dispersal embryo growth and acquisition of desiccation tolerance in Anemone nemorosa L. seeds. Seed Science Research 17, 155163.Google Scholar
Baskin, C.C. and Baskin, J.M. (1998) Seeds: ecology, biogeography, and evolution of dormancy and germination. London, Academic Press.Google Scholar
Baskin, C.C., Baskin, J.M. and Chester, E.W. (1999) Seed germination ecology of the annual grass Leptochloa panacea ssp. mucrunata and a comparison with L. panicoides and L. fusca. Acta Oecologica – International Journal of Ecology 20, 571577.CrossRefGoogle Scholar
Bonali, F., D'Auria, G., Ferrari, V. and Giordana, F. (2006) Atlante Corologico delle Piante Vascolari della Provincia di Cremona. Cremona, Italy, Provincia di Cremona.Google Scholar
Bothmer, R.V., Engstrand, L., Gustafsson, L., Persson, J., Snogerup, S. and Bentzer, B. (1971) Clonal variation in population of Anemone nemorosa L. Botaniska Notiser 124, 505519.Google Scholar
Brown, R.F. and Mayer, D.G. (1988) Representing cumulative germination. 2. The use of the Weibull function and other empirically derived curves. Annals of Botany 61, 127138.Google Scholar
Canullo, R. (1985) La recolonisation des champs abandonnés par l'espèce forestière Anemone nemorosa L.: II Rythme saisonnier, reproduction et potentialité générative des population de foret, de broussailles et de prairie. Giornale Botanico Italiano 119, 261289.Google Scholar
Daws, M.I., Burslem, D.F.R.P., Crabtree, L.M., Kirkman, P., Mullins, C.E. and Dalling, J.W. (2002) Differences in seed germination responses may promote coexistence of four sympatric Piper species. Functional Ecology 16, 258267.Google Scholar
Ellenberg, H. (1974) Zeigerwerte der Gefasspflanzen Mitteleuropas. Scripta Geobotanica 9, 197.Google Scholar
Ellenberg, H. (1988) Vegetation ecology of Central Europe (4th edition). Cambridge, Cambridge University Press.Google Scholar
Eriksson, O. (1995) Seedling recruitment in deciduous forest herbs: the effects of litter, soil chemistry and seed bank. Flora 190, 6570.CrossRefGoogle Scholar
Grime, J.P., Hodgson, J.G. and Hunt, R. (1988) Comparative plant ecology. London, Unwin Hyman.CrossRefGoogle Scholar
Hay, F.R. and Smith, R.D. (2003) Seed maturity: when to collect seeds from wild plants. pp. 97133in Smith, R.D.; Dickie, J.D.; Linington, S.H.; Pritchard, H.W.; Probert, R.J. (Eds) Seed conservation: turning science into practice. Kew, UK, Royal Botanic Gardens.Google Scholar
Holderegger, R. (1996) Effects of litter removal on the germination of Anemone nemorosa L. Flora 191, 175178.CrossRefGoogle Scholar
Hulthén, E. and Fries, M. (1986) Atlas of northern European vascular plants – North of the tropic of cancer. Vol. 1. Königstein, Koeltz Scientific Books.Google Scholar
IPCC (2007) Climate change 2007. The physical science basis. Cambridge, Cambridge University Press.Google Scholar
Jalas, J. and Suominen, J. (1989) Atlas Florae Europaeae. Distribution of vascular plants in Europe. 8. Nymphaeaceae to Ranunculaceae. Helsinki, The Committee for Mapping the Flora of Europe and Societas Biologica Fennica Vanamo.Google Scholar
Karlsson, L.M. and Milberg, P. (2007) A comparative study of germination ecology of four Papaver taxa. Annals of Botany 99, 935946.Google Scholar
Karlsson, L.M. and Milberg, P. (2008) Variation within species and inter-species comparison of seed dormancy and germination of four annual Lamium species. Flora 203, 409420.Google Scholar
Kondo, T., Miura, T., Okubo, N., Shimada, M., Baskin, C. and Baskin, J. (2004) Ecophysiology of deep simple epicotyl morphophysiological dormancy in seeds of Gagea lutea (Lilliaceae). Seed Science Research 14, 371378.CrossRefGoogle Scholar
Kos, M. and Poschlod, P. (2007) Seeds use temperature cues to ensure germination under nurse-plant shade in xeric Kalahari Savannah. Annals of Botany 99, 667675.CrossRefGoogle ScholarPubMed
Macchi, P. (2005) La flora della provincia di Varese. Varese, Italy, Provincia di Varese Edizioni.Google Scholar
Mariani, L., Paolillo, P.L. and Rasio, R. (2001) Climi e suoli lombardi. Il contributo dell'ERSAL alla conoscenza e conservazione delle risorse fisiche. Catanzaro, Italy, Rubbettino Editore.Google Scholar
Mondoni, A., Probert, R., Rossi, G., Hay, F. and Bonomi, C. (2008) Habitat-correlated seed germination behaviour in populations of wood anemone (Anemone nemorosa L.) from northern Italy. Seed Science Research 18, 213222.CrossRefGoogle Scholar
Oberdorfer, E. (1994) Pflanzensoziologische Exursions Flora. Stuttgard, Germany, Ulmer.Google Scholar
Pauli, H., Gottfried, M., Reiter, K., Klettner, C. and Grabherr, G. (2007) Signals of range expansions and contractions of vascular plants in the high Alps: observations (1994–2004) at the GLORIA master site Schrankogel, Tyrol, Austria. Global Change Biology 13, 147156.CrossRefGoogle Scholar
Pignatti, S. (1982) Flora d'Italia. Bologna, Ed Agricole.Google Scholar
Pigott, C.D. (1982) The experimental study of vegetation. New Phytologist 90, 389404.Google Scholar
Schutz, W. (1997) Are germination strategies important for the ability of cespitose wetland sedges (Carex) to grow in forests? Canadian Journal of Botany 75, 16921699.CrossRefGoogle Scholar
Schutz, W. and Rave, G. (1999) The effect of cold stratification and light on the seed germination of temperate sedges (Carex) from various habitats and implications for regeneration strategies. Plant Ecology 144, 215230.CrossRefGoogle Scholar
Shirreffs, D.A. (1985) Anemone nemorosa L. Journal of Ecology 73, 10051020.CrossRefGoogle Scholar
Toshikazu, N., Yoshiji, N. and Eriko, W. (2004) Embryo development and seed germination of Hepatica nobilis Schreber var. japonica as affected by temperature. Scientia Horticulturae 99, 345352.Google Scholar
Tutin, T.G., Heywood, V.H., Burges, N.A., Valentine, D.H., Walters, S.M. and Webb, D.A. (1964) Flora Europaea. Vol. 1. Cambridge, Cambridge University Press.Google Scholar
Van Assche, J., Van Nerum, D. and Darius, P. (2002) The comparative germination ecology of nine Rumex species. Plant Ecology 159, 131142.CrossRefGoogle Scholar
Vandelook, F., Van de Moer, D. and Van Assche, J.A. (2008) Environmental signals for seed germination reflect habitat adaptations in four temperate Caryophyllaceae. Functional Ecology 22, 470478.CrossRefGoogle Scholar