Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-25T05:26:50.023Z Has data issue: false hasContentIssue false

Exploring the hormonal and molecular regulation of sand pear (Pyrus pyrifolia) seed dormancy

Published online by Cambridge University Press:  03 January 2013

Yue-zhi Wang
Affiliation:
Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang Province310021, China
Mei-song Dai
Affiliation:
Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang Province310021, China
Shu-jun Zhang
Affiliation:
Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang Province310021, China
Ze-bin Shi*
Affiliation:
Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang Province310021, China
*
*Correspondence E-mail: [email protected]

Abstract

Although pear species (Pyrus spp.) are widely cultivated as an important fruit tree in the world, the regulatory mechanism of their seed dormancy is still unclear. In this research, the role of endocarp, seed coat and embryo in sand pear (Pyrus pyrifolia) seed dormancy was analysed by detecting the endogenous abscisic acid (ABA) and analysing germination experiments with different treatments. The results suggest that a combination of testa and embryo impose sand pear seed dormancy. The high concentration of endogenous ABA in the embryo effectively inhibited seed germination. The high concentration of ABA in the endocarp, as well as in the testa, suggests that dissipation and/or degradation of endogenous ABA in imbibed embryos were suppressed to maintain ABA-inhibited germination. The ABA and gibberellic acid (GA) key signalling genes, including ABI3–5, GAI, RGA and RGL2, were cloned and their expression was analysed in ABA-treated embryos and embryos of imbibed nutlets, imbibed true seeds (endocarp removed) and GA-treated true seeds. The results revealed regulation by ABA of the expression of ABA and GA signalling factors controlling the dormancy release of sand pear imbibed seeds.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Achard, P. and Genschik, P. (2009) Releasing the brakes of plant growth: how GAs shutdown DELLA proteins. Journal of Experimental Botany 60, 10851092.CrossRefGoogle ScholarPubMed
Benech-Arnold, R.L., Gualano, N., Leymarie, J., Côme, D. and Corbineau, F. (2006) Hypoxia interferes with ABA metabolism and increases ABA sensitivity in embryos of dormant barley grains. Journal of Experimental Botany 57, 14231430.CrossRefGoogle ScholarPubMed
Bradford, K.J., Benech-Arnold, R.L., Côme, D. and Corbineau, F. (2008) Quantifying the sensitivity of barley seed germination to oxygen, abscisic acid, and gibberellin using a population-based threshold model. Journal of Experimental Botany 59, 335347.CrossRefGoogle ScholarPubMed
Chen, S.Y., Kuo, S.R. and Chien, C.T. (2008) Roles of gibberellins and abscisic acid in dormancy and germination of red bayberry (Myrica rubra) seeds. Tree Physiology 28, 14311439.CrossRefGoogle ScholarPubMed
Chiang, G.C., Barua, D., Kramer, E.M., Amasino, R.M. and Donohue, K. (2009) Major flowering time gene, flowering locus C, regulates seed germination in Arabidopsis thaliana. Proceedings of the National Academy of Sciences, USA 106, 1166111666.CrossRefGoogle ScholarPubMed
Domínguez, F., Moreno, J. and Cejudo, F.J. (2004) A gibberellin-induced nuclease is localized in the nucleus of wheat aleurone cells undergoing programmed cell death. Journal of Biological Chemistry 279, 1153011536.CrossRefGoogle ScholarPubMed
Duke, S.H. and Kakefuda, G. (1981) Role of the testa in preventing cellular rupture during imbibition of legume seeds. Plant Physiology 67, 449456.CrossRefGoogle ScholarPubMed
Eckardt, N.A. (2007) GA perception and signal transduction: molecular interactions of the GA receptor GID1 with GA and the DELLA protein SLR1 in rice. Plant Cell 19, 20952097.CrossRefGoogle Scholar
Feurtado, J.A., Huang, D., Wicki-Stordeur, L., Hemstock, L.E., Potentier, M.S., Tsang, E.W. and Cutler, A.J. (2011) The Arabidopsis C2H2 zinc finger INDETERMINATE DOMAIN1/ENHYDROUS promotes the transition to germination by regulating light and hormonal signaling during seed maturation. Plant Cell 23, 17721794.CrossRefGoogle ScholarPubMed
Finch-Savage, W.E. and Leubner-Metzger, G. (2006) Seed dormancy and the control of germination. New Phytologist 171, 501523.CrossRefGoogle ScholarPubMed
Finkelstein, R., Reeves, W., Ariizumi, T. and Steber, C. (2008) Molecular aspects of seed dormancy. Annual Review of Plant Biology 59, 387415.CrossRefGoogle ScholarPubMed
Gómez-Cadenas, A., Zentalla, R., Walker-Simmons, M.K. and Ho, T.H. (2001) Gibberellin/abscisic acid antagonism in barley aleurone cells: site of action of the protein kinase PKABA1 in relation to gibberellin signaling molecules. Plant Cell 13, 667679.CrossRefGoogle ScholarPubMed
Hartmann, H.T., Kester, D.E. and Davies, F.T. Jr (1990) Plant propagation principles and practices (5th edition). Englewood Cliffs, NJ, Prentice-Hall.Google Scholar
Jung, S., Staton, M., Lee, T., Blenda, A., Svancara, R., Abbott, A. and Main, D. (2008) GDR (Genome Database for Rosaceae): integrated web-database for Rosaceae genomics and genetics data. Nucleic Acids Research 36, (Database issue): D1034–D1040.Google ScholarPubMed
Kardailsky, I., Shukla, V.K., Ahn, J.H., Dagenais, N., Christensen, S.K., Nguyen, J.T., Chory, J., Harrison, M.J. and Weigel, D. (1999) Activation tagging of the floral inducer FT. Science 286, 19621965.CrossRefGoogle ScholarPubMed
Kawęcki, Z. (1970) Study of physiology of stratified apple seeds ‘Antonó wka zwykła’. II. Sugar content of stratified apple seeds. Roczniki Nauk Rolniczych - Seria A 96, 721, (in Polish).Google Scholar
Kelly, K.M., van Staden, J. and Bell, W.E. (1992) Seed coat structure and dormancy. Plant Growth Regulation 11, 201209.CrossRefGoogle Scholar
Khan, M., Cavers, P.B., Kane, M. and Thompson, K. (1997) Role of the pigmented seed coat of proso millet (Panicum miliaceum L.) in imbibition, germination and seed persistence. Seed Science Research 7, 2126.CrossRefGoogle Scholar
Ko, J.H., Yang, S.H. and Han, K.H. (2006) Upregulation of an Arabidopsis RING-H2 gene, XERICO, confers drought tolerance through increased abscisic acid biosynthesis. Plant Journal 47, 343355.CrossRefGoogle ScholarPubMed
Kobayashi, Y., Kaya, H., Goto, K., Iwabuchi, M. and Araki, T. (1999) A pair of related genes with antagonistic roles in mediating flowering signals. Science 286, 19601962.CrossRefGoogle ScholarPubMed
Lazarova, G., Zeng, Y. and Kermode, A.R. (2002) Cloning and expression of an ABSCISIC ACID-INSENSITIVE 3 (ABI3) gene homologue of yellow-cedar (Chamaecyparis nootkatensis). Journal of Experimental Botany 53, 12191221.CrossRefGoogle ScholarPubMed
Lefever, S., Hellemans, J., Pattyn, F., Przybylski, D.R., Tayor, C., Geurts, R., Untergasser, A. and Vandesompele, J. (2009) RDML: Structured language and reporting guidelines for real-time quantitative PCR data. Nucleic Acids Research 37, 20652069.CrossRefGoogle ScholarPubMed
Lewak, S. (2011) Metabolic control of embryonic dormancy in apple seed: seven decades of research. Acta Physiology Plantarum 33, 124.CrossRefGoogle Scholar
Liu, Y., Ye, N., Liu, R., Chen, M. and Zhang, J. (2010) H2O2 mediates the regulation of ABA catabolism and GA biosynthesis in Arabidopsis seed dormancy and germination. Journal of Experimental Botany 61, 29792990.CrossRefGoogle ScholarPubMed
Livak, K.J. and Schmittgen, T.D. (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T).) method. Methods 25, 402408.CrossRefGoogle ScholarPubMed
Lopez-Molina, L., Mongrand, S., McLachlin, D.T., Chait, B.T. and Chua, N.H. (2002) ABI5 acts down stream of ABI3 to execute an ABA-dependent growth arrest during germination. Plant Journal 32, 317328.CrossRefGoogle Scholar
Malnoy, M., Faize, M., Venisse, J.S., Geider, K. and Chevreau, E. (2005) Expression of viral EPS-depolymerase reduces fire blight susceptibility in transgenic pear. Plant Cell Report 23, 632638.CrossRefGoogle ScholarPubMed
Mrva, K., Wallwork, M. and Mares, D.J. (2006) Alpha-amylase and programmed cell death in aleurone of ripening wheat grains. Journal of Experimental Botany 57, 877885.CrossRefGoogle ScholarPubMed
Nambara, E. and Marion-Poll, A. (2005) Abscisic acid biosynthesis and catabolism. Annual Review of Plant Biology 56, 165185.CrossRefGoogle ScholarPubMed
Nikolaeva, M.G. (1977) Factors controlling the seed dormancy pattern. pp. 5174in Khan, A.A. (Ed.) The physiology and biochemistry of seed dormancy and germination. Amsterdam, Elsevier/North Holland Biomedical Press.Google Scholar
Niu, X., Helentjaris, T. and Bate, N.J. (2002) Maize ABI4 binds coupling element1 in abscisic acid and sugar response genes. Plant Cell 14, 25652575.CrossRefGoogle ScholarPubMed
Oh, E., Kang, H., Yamaguchi, S., Park, J., Lee, D., Kamiya, Y. and Choi, G. (2009) Genome-wide analysis of genes targeted by PHYTOCHROME INTERACTING FACTOR 3-LIKE5 during seed germination in Arabidopsis. Plant Cell 21, 403419.CrossRefGoogle ScholarPubMed
Okamoto, M., Kuwahara, A., Seo, M., Kushiro, T., Asami, T., Hirai, N., Kamiya, Y., Koshiba, T. and Nambara, E. (2006) CYP707A1 and CYP707A2, which encode abscisic acid 8′-hydroxylases, are indispensable for proper control of seed dormancy and germination in Arabidopsis. Plant Physiology 141, 97107.CrossRefGoogle Scholar
Peng, J., Carol, P., Richards, D.E., King, K.E., Cowling, R.J., Murphy, G.P. and Harberd, N.P. (1997) The Arabidopsis GAI gene defines a signaling pathway that negatively regulates gibberellin responses. Genes Development 11, 31943205.CrossRefGoogle ScholarPubMed
Piskurewicz, U., Jikumaru, Y., Kinoshita, N., Nambara, E., Kamiya, Y. and Lopez-Molina, L. (2008) The gibberellic acid signaling repressor RGL2 inhibits Arabidopsis seed germination by stimulating abscisic acid synthesis and ABI5 activity. Plant Cell 20, 27292745.CrossRefGoogle ScholarPubMed
Piskurewicz, U., Turecková, V., Lacombe, E. and Lopez-Molina, L. (2009) Far-red light inhibits germination through DELLA-dependent stimulation of ABA synthesis and ABI3 activity. EMBO Journal 28, 22592271.CrossRefGoogle ScholarPubMed
Rudnicki, R., Kamińska, W. and Pieniężek, J. (1971) The interaction of abscisic acid with growth stimulators in germination of partially after-ripened apple embryos. Biologia Plantarum 13, 122127.CrossRefGoogle Scholar
Seo, M., Hanada, A., Kuwahara, A., Endo, A., Okamoto, M., Yamauchi, Y., North, H., Marion-Poll, A., Sun, T.P., Koshiba, T., Kamiya, Y., Yamaguchi, S. and Nambara, E. (2006) Regulation of hormone metabolism in Arabidopsis seeds: phytochrome regulation of abscisic acid metabolism and abscisic acid regulation of gibberellin metabolism. Plant Journal 48, 354366.CrossRefGoogle ScholarPubMed
Seo, M., Nambara, E., Choi, G. and Yamaguchi, S. (2009) Interaction of light and hormone signals in germinating seeds. Plant Molecular Biology 69, 463472.CrossRefGoogle ScholarPubMed
Shi, Z., Wang, Y., Dai, M. and Zhang, S. (2011) Application of apple gene sequence for pear primer design. Journal of Nanjing Agricultural University 34, 3640, (in Chinese).Google Scholar
Silverstone, A.L., Ciampaglio, C.N. and Sun, T. (1998) The Arabidopsis RGA gene encodes a transcriptional regulator repressing the gibberellin signal transduction pathway. Plant Cell 10, 155169.CrossRefGoogle ScholarPubMed
Silverstone, A.L., Jung, H.S., Dill, A., Kawaide, H., Kamiya, Y. and Sun, T.P. (2001) Repressing a repressor: gibberellin-induced rapid reduction of the RGA protein in Arabidopsis. Plant Cell 13, 15551566.Google ScholarPubMed
Subbaiah, T. and Powell, L. (1987) Abscisic acid in dormant apple seed tissues – a rapid purification scheme using pre-packed columns and GCMS-SEM quantitation. Physiologia Plantarum 71, 203206.CrossRefGoogle Scholar
Sun, X., Jones, W.T., Harvey, D., Edwards, P.J., Pascal, S.M., Kirk, C., Considine, T., Sheerin, D.J., Rakonjac, J., Oldfield, C.J., Xue, B., Dunker, A.K. and Uversky, V.N. (2010) N-terminal domains of DELLA proteins are intrinsically unstructured in the absence of interaction with GID1/gibberellic acid receptors. Journal of Biological Chemistry 285, 1155711571.CrossRefGoogle ScholarPubMed
Thompson, A.J., Jackson, A.C., Symonds, R.C., Mulholland, B.J., Dadswell, A.R., Blake, P.S., Burbidge, A. and Taylor, I.B. (2000) Ectopic expression of a tomato 9-cis-epoxycarotenoid dioxygenase gene causes over-production of abscisic acid. Plant Journal 23, 363374.CrossRefGoogle ScholarPubMed
Thompson, J.D., Higgins, D.G. and Gibson, T.J. (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research 22, 46734680.CrossRefGoogle ScholarPubMed
Tissaoui, T. and Côme, D. (1973) Levée de dormance de l'embryon de pommier (Pyrus malus L.) en absence d'oxygène et de froid. Planta 11, 315322.CrossRefGoogle Scholar
Wang, Y., Dai, M., Zhang, S. and Shi, Z. (2012) Analyzing the factors affecting seed germination of early-ripening sand pear (Pyrus pyrifolia). Journal of Zhejiang Agricultural Sciences 7, 4548, (in Chinese).Google Scholar
Wierszyłłowski, J. (1960) Notes on the anatomical structure and chemical composition of the seeds of apple and pear. Roczniki Nauk Rolniczych - Seria A 81, 205228, (in Polish).Google Scholar
Wyatt, J.E. (1977) Seed coat and water absorption properties of seed of near-isogenic snap bean lines differing in seed coat color. Journal of the American Society for Horticultural Science 102, 478480.CrossRefGoogle Scholar
Xi, W., Liu, C., Hou, X. and Yu, H. (2010) MOTHER OF FT AND TFL1 regulates seed germination through a negative feedback loop modulating ABA signaling in Arabidopsis. Plant Cell 22, 17331748.CrossRefGoogle ScholarPubMed
Yang, Y., Xu, C., Wang, B. and Jia, J. (2001) Effects of plant growth regulators on secondary wall thickening of cotton fibres. Plant Growth Regulation 35, 233237.Google Scholar
Zaman, S., Padmesh, S. and Tawfiq, H. (2011) Selected seed pretreatment on germination of Kuwait's native perennial plant species. International Journal of Botany 7, 108112.CrossRefGoogle Scholar
Zentella, R., Yamauchi, D. and Ho, T.H.D. (2002) Molecular dissection of the gibberellin/abscisic acid signaling pathways by transiently expressed RNA interference in barley aleurone cells. Plant Cell 14, 22892301.CrossRefGoogle ScholarPubMed
Zentella, R., Zhang, Z.L., Park, M., Thomas, S.G., Endo, A., Murase, K., Fleet, C.M., Jikumaru, Y., Nambara, E., Kamiya, Y. and Sun, T.P. (2007) Global analysis of della direct targets in early gibberellin signaling in Arabidopsis. Plant Cell 19, 30373057.CrossRefGoogle ScholarPubMed
Zhang, L., Qiu, Z., Hu, Y., Yang, F., Yan, S., Zhao, L., Li, B., He, S., Huang, M., Li, J. and Li, L. (2011) ABA treatment of germinating maize seeds induces VP1 gene expression and selective promoter-associated histone acetylation. Physiologia Plantarum 143, 287296.CrossRefGoogle ScholarPubMed
Zhang, S.J., Wu, J., Chen, H., Gu, C., Tao, S.T., Wu, J.Y. and Zhang, S.L. (2011) Identification of differentially expressed genes in a spontaneous mutant of ‘Nanguoli’ pear (Pyrus ussuriensis Maxim) with large fruit. Journal of Horticultural Science and Biotechnology 86, 595602.CrossRefGoogle Scholar