Published online by Cambridge University Press: 31 January 2022
To maximize seed longevity, seeds should be harvested at optimal maturity, that is, when seeds have acquired maximum physiological quality before deterioration begins. The aim of this study was to map the variation in temporal patterns of lentil (Lens culinaris Medik.) seed quality development when grown across four regeneration environments, which differ in the level of temperature and humidity control throughout the growing season, at the Australian Grains Genebank. Seeds of two lentil accessions (76080 and 76072) were harvested at different stages throughout development, commencing at 21 d after 50% anthesis until a maximum of 130 d. At each harvest, physiological quality traits, including germinability (fresh and dried seeds) and seed longevity, were determined, as well as seed dry weight and moisture content. Seeds of both accessions, and in all environments, started to accumulate physiological quality early on in development but did not reach their maximum until 3–54 d after mass maturity. The temporal patterns of desiccation tolerance and storage longevity were highly influenced by the environmental conditions during the maturation drying phase, affecting both ‘when’ maximum quality was attained and for how long it was maintained, thereafter. Seeds did not show a typical developmental response, rather variation was observed in seed quality development both between and within accessions grown in the different environments. The poorest storage longevity was seen when seeds of both accessions were grown in the cooler, temperature-controlled glasshouse, and the maximum longevity was observed in the warmer, semi-protected environments of the green and the big igloo for accessions 76080 and 76072, respectively.