Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-25T04:51:04.919Z Has data issue: false hasContentIssue false

Endogenous jasmonates in dry and imbibed sunflower seeds from plants grown at different soil moisture contents

Published online by Cambridge University Press:  01 June 2007

Ana Vigliocco
Affiliation:
Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales Universidad Nacional de Río Cuarto. 5800-Río Cuarto, Argentina
Sergio Alemano
Affiliation:
Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales Universidad Nacional de Río Cuarto. 5800-Río Cuarto, Argentina
Otto Miersch
Affiliation:
Institut für Pflanzenbiochemie, Weinberg 3, 06120-Halle, Germany
Daniel Alvarez
Affiliation:
Instituto Nacional de Tecnología Agropecuaria, INTA-EEA, Manfredi, Argentina
Guillermina Abdala*
Affiliation:
Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales Universidad Nacional de Río Cuarto. 5800-Río Cuarto, Argentina
*
*Correspondence Fax: +54 358 4676230 Email: [email protected]

Abstract

In this study, we characterized two sunflower (Helianthus annuus L.) lines with differential sensitivity to drought, the sensitive line B59 and the tolerant line B71. Using both lines, we compared the content of endogenous jasmonates (JAs) in dry and imbibed seeds from plants grown under irrigation and drought. Jasmonic acid (JA), 12-oxo-phytodienoic acid (OPDA), 11-hydroxyjasmonate (11-OH-JA) and 12-hydroxyjasmonate (12-OH-JA) were detected in dry and imbibed sunflower seeds. Seeds from plants grown under drought had a lower content of total JAs and exhibited higher germination percentages than seeds from irrigated plants, demonstrating that environmental conditions have a strong influence on the progeny. OPDA and 12-OH-JA were the main compounds found in dry seeds of both lines. Imbibed seeds showed an enhanced amount of total JAs with respect to dry seeds produced by plants grown in both soil moisture conditions. Imbibition triggered a dramatic OPDA increase in the embryo, suggesting a role of this compound in germination. We conclude that JAs patterns vary during sunflower germination and that the environmental conditions experienced by the mother plant modify the hormonal content of the seed progeny.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amzallag, G.N., Nachmias, A. and Lerner, H.R. (1998) Influence of the mode of salinization on reproductive traits of field-grown progeny in Sorghum bicolor. Israel Journal of Plant Science 46, 916.CrossRefGoogle Scholar
Andrade, A., Vigliocco, A., Alemano, S., Miersch, O., Botella, M.A. and Abdala, G. (2005) Endogenous jasmonates and octadecanoids in hypersensitive tomato mutants during germination and seedling development in response to abiotic stress. Seed Science Research 15, 309318.CrossRefGoogle Scholar
Benech Arnold, R.L., Fenner, M. and Edwards, P.J. (1991) Changes in germinability, ABA content and ABA embryonic sensitivity in developing seeds of Sorghum bicolor (L.) Moench. induced by water stress during grain filling. New Phytologist 118, 339347.CrossRefGoogle ScholarPubMed
Blechert, S., Brodschelm, W., Holder, S., Kammerer, L., Kutchan, T.M., Muller, M.J., Xia, Z. and Zenk, M.H. (1999) The octadecanoic pathway: signal molecules for the regulation of secondary pathways. Proceedings of the National Academy of Sciences, USA 92, 40994105.CrossRefGoogle Scholar
Chimenti, C.A. (1991) Variabilidad intraespecífica y ontogénica en la capacidad de ajuste osmótico en girasol (Helianthus annuus L.). MSc. Thesis, Escuela para Graduados, Facultad de Agronomía, Universidad de Buenos Aires.Google Scholar
Connor, D.J. and Hall, A.J. (1997) Sunflower physiology. pp. 113182in Schneiter, A.A. (Ed.) Sunflower technology and production. Madison, American Society of Agronomy.Google Scholar
Dvörák, J. and Ross, K. (1986) Expression of tolerance of Na+, K+, Mg2+, Cl−  and SO42 −  ions and sea water in the amphiploid of Triticum aestivum × Elytrigia elongata. Crop Science 26, 658660.CrossRefGoogle Scholar
Fick, G.N. and Miller, J.F. (1997) Sunflower breeding. pp. 395439in Schneiter, A.A. (Ed.) Sunflower technology and production. Madison, American Society of Agronomy.Google Scholar
Gao, X.P., Wang, X.F., Lu, Y.F., Zhang, L.Y., Shen, Y.Y., Liang, Z. and Zhang, D.P. (2004) Jasmonic acid is involved in the water-stress-induced betaine accumulation in pear leaves. Plant, Cell and Environment 27, 497507.CrossRefGoogle Scholar
Gidda, S.K., Miersch, O., Levitin, A., Schmidt, J., Wasternack, C. and Varin, L. (2003) Biochemical and molecular characterization of a hydroxyjasmonate sulfotransferase from Arabidopsis thaliana. Journal of Biological Chemistry 278, 1789517900.CrossRefGoogle ScholarPubMed
Hause, B., Stenzel, I., Miersch, O., Maucher, H., Kramell, R., Ziegler, J. and Wasternack, C. (2000) Tissue-specific oxylipin signature of tomato flowers: allene oxide cyclase is highly expressed in distinct flower organs and vascular bundles. Plant Journal 24, 113126.CrossRefGoogle ScholarPubMed
Holtman, W.L., van Duijn, G., Sedee, N.J.A. and Douma, A.C. (1996) Differential expression of lipoxygenase isoenzymes in embryos of germinating barley. Plant Physiology 111, 569576.CrossRefGoogle ScholarPubMed
Koch, T., Krumm, T., Jung, V., Engelberth, J. and Boland, W. (1999) Differential induction of plant volatile biosynthesis in the lima bean by early and late intermediates of octadecanoid signalling pathway. Plant Physiology 121, 153162.CrossRefGoogle Scholar
Kramell, R., Miersch, O., Atzorn, R., Parthier, B. and Wasternack, C. (2000) Octadecanoid-derived alteration of gene expression and the ‘oxylipin signature’ in stressed barley leaves. Implications for different signaling pathways. Plant Physiology 123, 177187.CrossRefGoogle ScholarPubMed
Martínez-Force, E., Alvarez-Ortega, R., Cantisán, S. and Garcés, R. (1998) Fatty acid composition in developing high saturated sunflower (Helianthus annuus) seeds: maturation changes and temperature effect. Journal of Agricultural and Food Chemistry 46, 35773582.CrossRefGoogle Scholar
Meyer, A., Miersch, O., Buttner, C., Dathe, W. and Sembdner, G. (1984) Occurrence of the plant growth regulator jasmonic acid in plants. Journal of Plant Growth Regulation 3, 18.CrossRefGoogle Scholar
Miersch, O., Weichert, H., Stenzel, I., Hause, B., Maucher, H., Feussner, I. and Wasternack, C. (2004) Constitutive overexpression of allene oxide cyclase in tomato (Lycopersicon esculentum cv. Lukullus) elevates levels of some jasmonates and octadecanoids in flower organs but not in leaves. Phytochemistry 65, 847856.CrossRefGoogle Scholar
Miller, J.F. (1995) Inheritance of salt tolerance in sunflower. HELIA 18, 916.Google Scholar
Sanders, P.M., Lee, P.Y., Biesgen, C., Boone, J.D., Beals, T.P., Weiler, E.W. and Goldberg, R.B. (2000) The Arabidopsis DELAYED DEHISCENCE1 gene encodes an enzyme in the jasmonic acid synthesis pathway. Plant Cell 12, 10411062.CrossRefGoogle ScholarPubMed
Sasaki-Sekimoto, Y., Taki, N., Obayashi, T., Aono, M., Matsumoto, F., Sakurai, N., Suzuki, H., Hirai, M.Y., Noji, M., Saito, K., Masuda, T., Takamiya, K.-I., Shibata, D. and Ohta, H. (2005) Coordinated activation of metabolic pathways for antioxidants and defence compounds by jasmonates and their roles in stress tolerance in Arabidopsis. Plant Journal 44, 653668.CrossRefGoogle ScholarPubMed
Sembdner, G. and Parthier, B. (1993) The biochemistry and the physiological and molecular actions of jasmonates. Annual Review of Plant Physiology and Plant Molecular Biology 44, 569589.CrossRefGoogle Scholar
Somers, D.A., Ullrich, S.E. and Ramsay, M.F. (1983) Sunflower germination under simulated drought stress. Agronomy Journal 75, 570572.CrossRefGoogle Scholar
Stelmach, B.A., Müller, A., Hennig, P., Laudert, D., Andert, L. and Weiler, E.W. (1998) Quantitation of the octadecanoid 12-oxo-phytodienoic acid, a signalling compound in plant mechanotransduction. Phytochemistry 47, 539546.CrossRefGoogle ScholarPubMed
Stintzi, A. and Browse, J. (2000) The Arabidopsis male-sterile mutant, opr3, lacks the 12-oxophytodienoic acid reductase required for jasmonate synthesis. Proceedings of the National Academy of Sciences, USA 97, 1062510630.CrossRefGoogle ScholarPubMed
Vázquez, R.J.L. and Paolini, J.D. (1991) Seguimiento de la disponibilidad hídrica para girasol utilizando subseries decádicas. Reunión nacional de oleaginosos. Argentina, Rosario, pp. 2126.Google Scholar
Wasternack, C. and Hause, B. (2002) Jasmonates and octadecanoids: Signals in plant stress response and development. Progress in Nucleic Acid Research and Molecular Biology 72, 165221.CrossRefGoogle ScholarPubMed
Wasternack, C. and Parthier, B. (1997) Jasmonate-signalled plant gene expression. Trends in Plant Science 2, 302307.CrossRefGoogle Scholar
Weber, H., Vick, B.A. and Farmer, E.E. (1997) Dinor-oxo-phytodienoic acid: a new hexadecanoid signal in the jasmonate family. Proceedings of the National Academy of Sciences, USA 94, 1047319478.CrossRefGoogle ScholarPubMed
Xin, Z.Y., Zhou, X. and Pilet, P.E. (1997) Level changes of jasmonic, abscisic and indole-3yl-acetic acids in maize under desiccation stress. Journal of Plant Physiology 151, 120124.CrossRefGoogle Scholar