Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-27T00:23:02.106Z Has data issue: false hasContentIssue false

Endogenous abscisic acid and precocious germination of developing soybean seeds

Published online by Cambridge University Press:  01 September 2007

Carlos O. Gosparini
Affiliation:
Cátedras de Fisiología VegetalFacultad de Ciencias Agrarias, Universidad Nacional de Rosario, Campo Experimental J. Villarino, CC14, S2125ZAA, Zavalla, Santa Fe, Argentina
Hector A. Busilacchi
Affiliation:
Biología, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Campo Experimental J. Villarino, CC14, S2125ZAA, Zavalla, Santa Fe, Argentina
Paolo Vernieri
Affiliation:
Dipartimento di Biologia delle Piante Agrarie, Universitá degli Studi di Pisa, Viale delle Piagge no 23, 56124Pisa, Italy
Eligio N. Morandi*
Affiliation:
Cátedras de Fisiología VegetalFacultad de Ciencias Agrarias, Universidad Nacional de Rosario, Campo Experimental J. Villarino, CC14, S2125ZAA, Zavalla, Santa Fe, Argentina
*
*Correspondence: Fax: 54-341-4970085 Email: [email protected]

Abstract

The germination of developing seeds is very uncommon and is generally associated with deficiencies in abscisic acid (ABA) synthesis or sensitivity. This paper examines the quantitative relationship between the inhibition of precocious germination and endogenous ABA in the embryonic axis (ABAa) of hydrated soybean [Glycine max (L.) Merr.] seeds, isolated after the completion of histodifferentiation and before the beginning of dehydration, as well as the magnitude and evolution of axis sensitivity to endogenous ABA during that period. Developing seeds harvested at 25, 30, 35, 40 and 45 d after anthesis (DAA) were subjected to incubation or washing to induce changes in ABA content. ABA content was measured by radioimmunoassay, using a monoclonal antibody against free ABA. Germinability was measured as the time to 50% germination (t50). Washing and incubation induced eight- and twofold increases, respectively, in the rate of ABAa decline compared with the in planta ABAa decline. The threshold ABAa for inhibition of precocious germination (ABAc) increased slightly from 25 to 40 DAA [1.15–1.66 μg ABA (g DW)− 1]. This contrasted with the substantial decline in ABAa [10.90–2.07 μg ABA (g DW)− 1] during the same period, and indicated that sensitivity to endogenous ABA of hydrated seeds was initially high and diminished slowly during development. The relationship between (ABAa–ABAc) and t50 was linear for immature seeds incubated before and after washing. Below the ABAc, there were no differences in the t50 of 25–45 DAA seeds. The ABAa contribution to the control of precocious soybean seed germination was evident, although other potentially interacting factors were also present.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ackerson, R.C. (1984) Abscisic acid and precocious germination in soybeans. Journal of Experimental Botany 35, 414421.CrossRefGoogle Scholar
Bewley, J.D. (1997) Seed germination and dormancy. Plant Cell 9, 10551066.CrossRefGoogle ScholarPubMed
Bewley, J.D.andBlack, M. (1994) Seeds: Physiology of development and germination (2nd edition). New York, Plenum Press.CrossRefGoogle Scholar
Black, M. (1991) Involvement of ABA in the physiology of developing and mature seeds. pp. 99124in Davies, W.J.; Jones, H.G. (Eds) Abscisic acid: Physiology and biochemistry. Oxford, Bios Scientific Publishers Ltd.Google Scholar
Egli, D.B. (1990) Seed water relations and the regulation of the duration of seed growth in soybean. Journal of Experimental Botany 41, 243248.CrossRefGoogle Scholar
Egli, D.B. (1998) Seed biology and the yield of grain crops. Wallingford, CABI Publishing.Google Scholar
Frey, A., Audran, C., Marin, E., Sotta, B.andMarion-Poll, A. (1999) Engineering seed dormancy by the modification of zeaxanthin epoxidase gene expression. Plant Molecular Biology 39, 12671274.CrossRefGoogle ScholarPubMed
Gifford, R.M.andThorne, J.H. (1985) Sucrose concentration at the apoplastic interface between seed coat and cotyledons of developing soybean seeds. Plant Physiology 77, 863868.CrossRefGoogle ScholarPubMed
Gosparini, C.O. (2002) Regulación del desarrollo embrional en soja: Rol del ABA en el control de la germinación de semillas inmaduras de soja. Doctoral thesis, Facultad de Cs. Bioquímicas y Farmacéuticas. Universidad Nacional de Rosario, Argentina.Google Scholar
Gosparini, C.O., Morandi, E.N.andCairo, C.A. (1997) Efecto de la edad, el lavado y la temperatura sobre la germinación de las semillas inmaduras, el crecimiento radicular y el tiempo hasta la floración, de la soja. Revista de la Facultad de Agronomía, La Plata 102, 19.Google Scholar
Hilhorst, H.W.M. (1995) A critical update on seed dormancy. I. Primary dormancy. Seed Science Research 5, 6173.CrossRefGoogle Scholar
Iglesias, R.G.andBabiano, M.J. (1997) Endogenous abscisic acid during the germination of chick-pea seeds. Physiologia Plantarum 100, 500504.CrossRefGoogle Scholar
Karssen, C.M. (1995) Hormonal regulation of seed development, dormancy, and germination studied by genetic control. pp. 333350in Kigel, J.; Galili, G. (Eds) Seed development and germination. New York, Marcel Dekker.Google Scholar
Kermode, A.R. (2005) Role of abscisic acid in seed dormancy. Journal of Plant Growth Regulation 24, 319344.CrossRefGoogle Scholar
Koornneef, M.andKarssen, C.M. (1994) Seed dormancy and germination. pp. 313334in Meyerowitz, E.M.; Somerville, C.R. (Eds) Arabidopsis. New York, Cold Spring Harbor Laboratory Press.Google Scholar
Lindgren, L.O., Stalberg, K.G.andHöglund, A.S. (2003) Seed-specific overexpression of an endogenous Arabidopsis phytoene synthase gene results in delayed germination and increased levels of carotenoids, chlorophyll and abscisic acid. Plant Physiology 132, 779785.CrossRefGoogle ScholarPubMed
Loveys, B.R.andVan Dijk, H.M. (1988) Improved extraction of abscisic acid from plant tissue. Australian Journal of Plant Physiology 15, 421427.Google Scholar
McCarty, D.R. (1995) Genetic control and integration of maturation and germination pathways in seed development. Annual Review of Plant Physiology and Plant Molecular Biology 46, 7193.CrossRefGoogle Scholar
Miles, D.F., TeKrony, D.M.andEgli, D.B. (1988) Changes in viability, germination, and respiration of freshly harvested soybean seed during development. Crop Science 28, 700704.CrossRefGoogle Scholar
Morandi, E.N.andGosparini, C.O. (1991) Modificación del balance hormonal en embriones de soja para inducir su germinación precoz. pp. 137143in Actas Primera Reunión Nacional de Oleaginosos. Rosario, Argentina.Google Scholar
Morandi, E.N., Schussler, J.R.andBrenner, M.L. (1990) Photoperiodically induced changes in seed growth rate of soybean as related to endogenous concentrations of ABA and sucrose in seed tissues. Annals of Botany 66, 605611.CrossRefGoogle Scholar
Morandi, E.N., Gosparini, C.O., Busilacchi, H.A.andVernieri, P. (2002) Seed coat blocks exogenous ABA inhibition of germination in developing soybean seeds. p. 87in Proceedings from the VII international workshop on seed biology, May 2002, Salamanca, Spain.Google Scholar
Phillips, J., Artsaenko, O., Fiedler, U., Hortsmann, C., Mock, H.P., Muntz, K.andConrad, U. (1997) Seed-specific immunomodulation of abscisic acid activity induces a developmental switch. EMBO Journal 16, 44894496.CrossRefGoogle ScholarPubMed
Qin, X.andZeevaart, J.A.D. (2002) Overexpression of a 9-cis-epoxycarotenoid dioxygenase gene in Nicotiana plumbaginifolia increases abscisic acid and phaseic acid levels and enhances drought tolerance. Plant Physiology 128, 544–551.CrossRefGoogle ScholarPubMed
Robichaud, C., Wong, J.andSussex, I.M. (1980) Control of in vitro growth of viviparous embryo mutants of maize by abscisic acid. Developmental Genetics 1, 325–330.CrossRefGoogle Scholar
Schopfer, P.andPlachy, C. (1985) Control of seed germination by abscisic acid. III. Effect on embryo growth potential (minimum turgor pressure) and growth coefficient (cell wall extensibility) in Brassica napus L. Plant Physiology 77, 676686.CrossRefGoogle Scholar
Schussler, J.R., Brenner, M.L.andBrun, W.A. (1984) Abscisic acid and its relationship to seed filling in soybeans. Plant Physiology 76, 301–306.CrossRefGoogle ScholarPubMed
Thompson, A.J., Jackson, A.C., Symonds, R.C., Mulholland, B.J., Dadswell, A.R., Blake, P.S., Burbidge, A.andTaylor, I.B. (2000) Ectopic expression of a tomato 9-cis-epoxycarotenoid dioxygenase gene causes over-production of abscisic acid. Plant Journal 23, 363374.CrossRefGoogle ScholarPubMed
Trewavas, A. (1991) How do plant growth substances work? II. Plant Cell and Environment 14, 1–12.CrossRefGoogle Scholar
Vernieri, P., Perata, P., Armellini, D., Bugnoli, M., Presentini, R., Lorenzi, R., Ceccarelli, N., Alpi, A.andTognoni, F. (1989a) Solid phase radioimmunoassay for the quantitation of abscisic acid in plant crude extracts using a new monoclonal antibody. Journal of Plant Physiology 134, 441446.CrossRefGoogle Scholar
Vernieri, P., Perata, P., Lorenzi, R.andCeccarelli, N. (1989b) Abscisic acid levels during early seed development in Sechium edule Sw. Plant Physiology 91, 13511355.CrossRefGoogle ScholarPubMed
Walker–Simmons, M.K., Reaney, M.J.T., Quarrie, S.A., Perata, P., Vernieri, P.andAbrams, S.R. (1991) Monoclonal antibody recognition of abscisic acid analogs. Plant Physiology 95, 46–51.CrossRefGoogle ScholarPubMed
Xu, N.andBewley, J.D. (1991) Sensitivity to abscisic acid and osmoticum changes during embryogenesis of alfalfa (Medicago sativa). Journal of Experimental Botany 42, 821826.CrossRefGoogle Scholar
Xu, N., Coulter, K.M.andBewley, J.D. (1990) Abscisic acid and osmoticum prevent germination of developing alfalfa embryos, but only osmoticum maintains the synthesis of developmental proteins. Planta 182, 382–390.CrossRefGoogle ScholarPubMed