Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-25T04:49:04.908Z Has data issue: false hasContentIssue false

Effect of light on germination of seeds of Cactaceae from the Chihuahuan Desert, Mexico

Published online by Cambridge University Press:  22 February 2007

Joel Flores*
Affiliation:
Instituto Potosino de Investigación Científica y Tecnológica, A.C., División de Ingeniería Ambiental y Manejo de Recursos Naturales, A.P. 3-74, San Luis Potosí, S.L.P., México
Enrique Jurado
Affiliation:
Laboratorio de Ecología, Facultad de Ciencias Forestales, Universidad Autónoma de Nuevo León. A.P. 41, 67700, Linares, N.L., México
Alberto Arredondo
Affiliation:
Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Campo Experimental San Luis, San Luis Potosí, S.L.P., México
*
*Correspondence: Fax: +52 444 8 34 20 10 Email: [email protected]

Abstract

In the Chihuahuan Desert, there are many cacti species considered to be at risk due to illegal extraction, land-use change and overgrazing. To reduce their illegal extraction, ex situ plant propagation has been suggested. However, the literature regarding seed germination biology of these species is scarce. We investigated the effect of light on germination percentages and germination rate (t50) in seeds of 28 cactus species from the Chihuahuan Desert. Seeds were incubated at a 14-h daily photoperiod (light) and in continuous darkness at 25°C for 30 d, after which seeds failing to germinate in darkness were transferred to light for 30 d. Only 11 of the species had non-dormant seeds, germinating ≥70% in the light; thus an evaluation of the effect of light versus darkness on germination was confined to them. All species were positively photoblastic, and all of them had seeds weighing <1 mg. Ten species did not germinate in darkness, and one species had only 7% germination. From these 11 species, 8 did not germinate to a significantly higher percentage when the same set of seeds was transferred from dark to light, suggesting that darkness had triggered secondary dormancy (skotodormancy). To our knowledge, these results are the first to show that darkness triggers secondary dormancy in cacti. Implications of having a light requirement for germination and having small seeds to accumulate a persistent soil seed bank are discussed. These results contribute to understanding the germination biology of cactus species at risk, and could enhance the propagation of large numbers of cultivated individuals outside their habitats, promoting ex situ conservation.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amritphale, D., Gutch, A. and Hsiao, A.I. (1993) Acidification, growth promoter and red light effects on germination of skotodormant seeds of Hygrophila auriculata. Environmental and Experimental Botany 33, 471477.CrossRefGoogle Scholar
Baskin, J.M. and Baskin, C.C. (1989) Physiology of dormancy and germination in relation to seed bank ecology. pp. 5366. in Leck, M.A., Parker, V.T.;, Simpson, R.L. (Eds) Ecology of soil seed banks. San Diego, Academic Press.CrossRefGoogle Scholar
Baskin, C.C. and Baskin, J.M. (1998) Seeds: Ecology, biogeography, and evolution of dormancy and germination. San Diego, Academic Press.Google Scholar
Bewley, J.D. and Black, M. (1994) Seeds: Physiology of development and germination (2nd edition). New York, Plenum Press.CrossRefGoogle Scholar
Bowers, J.E. (2000) Does Ferocactus wislizeni (Cactaceae) have a between-year seed bank?. Journal of Arid Environments 45, 197205.CrossRefGoogle Scholar
Boyle, T.H. and Anderson, E.F. (2002) Biodiversity and conservation. pp. 125141. in Nobel, P.S. (Eds) Cacti: Biology and uses. Berkeley, University of California Press.Google Scholar
Cortés-Figueira, J.E., Vasconcellos-Neto, J., Alice-García, M., Teixeira, de Souza, A.L. (1994) Saurocory in Melocactus violaceus (Cactaceae). Biotropica 26, 295301.CrossRefGoogle Scholar
De la Barrera, E. and Nobel, P.S. (2003) Physiological ecology of seed germination for the columnar cactus Stenocereus queretaroensis. Journal of Arid Environments 53, 297306.CrossRefGoogle Scholar
De la Rosa-Ibarra, M., García, H. (1994) Estimulación de la germinación de cinco especies de cactáceas consideradas en peligro de extinción. Phyton – International Journal of Experimental Botany 56, 147150.Google Scholar
De Viana, M.L. (1999) Seed production and seed bank of Trichocereus pasacana (Cactaceae) in northwestern Argentina. Tropical Ecology 40, 7984.Google Scholar
Dehgan, B., Pérez, H.E. (2005) Preliminary study shows germination of Caribbean applecactus (Harrisia fragrans) improved with acid scarification and gibberellic acid. Native Plants 6, 9196.CrossRefGoogle Scholar
Duke, S.O., Egley, G.H. and Reger, B.J. (1977) Model for variable light sensitivity in imbibed dark dormant seeds. Plant Physiology 59, 244249.CrossRefGoogle ScholarPubMed
Flores, J. and Briones, O. (2001) Plant life-form and germination in a Mexican inter-tropical desert: effects of soil water potential and temperature. Journal of Arid Environments 47, 485497.CrossRefGoogle Scholar
Flores, J., Arredondo, A. and Jurado, E. (2005) Comparative seed germination in species of Turbinicarpus: An endangered cacti genus. Natural Areas Journal 25, 183187.Google Scholar
Georghiou, K. and Thanos, C.A. (1983) Phytochrome control of skotodormancy release in Grand Rapids lettuce achenes. Physiologia Plantarum 57, 352356.CrossRefGoogle Scholar
Godínez-Álvarez, H., Valverde, T., Ortega-Baes, P. (2003) Demographic trends in the Cactaceae. Botanical Review 69, 173203.CrossRefGoogle Scholar
Gómez-Hinostrosa, C., Hernández, H.M. (2000) Diversity, geographic distribution, and conservation of Cactaceae in the Mier y Noriega region, Mexico. Biodiversity and Conservation 9, 403418.CrossRefGoogle Scholar
Grime, J.P., Mason, G., Curtis, A.V., Rodman, J., Band, S.R., Mowforth, M.A.G., Neal, A.M. and Shaw, S. (1981) A comparative study of germination characteristics of a local flora. Journal of Ecology 69, 10171059.CrossRefGoogle Scholar
Gutterman, Y. (1993) Seed germination in desert plants (Adaptations of desert organisms). Berlin, Springer-Verlag.CrossRefGoogle Scholar
Gutterman, Y. (1994) Strategies of seed dispersal and germination in plants inhabiting deserts. Botanical Review 60, 373425.CrossRefGoogle Scholar
Guzmán, U., Arias, S., Dávila, P. (2003) Catálogo de cactáceas mexicanas. México, D.F. UNAM-CONABIO.Google Scholar
Haslinger, G. (1999) Turbinicarpus in the greenhouse. Turbi-Now 6, 24.Google Scholar
Hernández, H.M., Bárcenas, R.T. (1995) Endangered cacti in the Chihuahuan Desert. I. Distribution patterns. Conservation Biology 9, 11761188.Google Scholar
Hernández, H.M., Bárcenas, R.T. (1996) Endangered cacti in the Chihuahuan Desert. II. Biogeography and conservation. Conservation Biology 10, 12001209.CrossRefGoogle Scholar
Hernández, H.M., Godínez, H. (1994) Contribución al conocimiento de las cactáceas mexicanas amenazadas. Acta Botánica Mexicana 26, 3352.CrossRefGoogle Scholar
Hernández, H.M., Gómez-Hinostrosa, C. (2002) An integrated approach to the conservation of cacti in Mexico. pp. 350357. in Maunder, M.;, Clubbe, C.l;, Hankamer, C.;, Groves, M. (Eds) Plant conservation in the tropics. Kew, Royal Botanic Garden.Google Scholar
Hodkinson, D.J., Askew, A.P., Thompson, K., Hodgson, J.G., Bakker, J.P. and Bekker, R.M. (1998) Ecological correlates of seed size in the British flora. Functional Ecology 12, 762766.CrossRefGoogle Scholar
Hsiao, A.I. and Huang, W.Z. (1988) Induction of germination of skotodormant seeds of Johnson grass, Sorghum halepense (L.) Pers. Weed Research 28, 163174.CrossRefGoogle Scholar
Jurado, E. and Westoby, M. (1992) Germination biology of selected Central Australian plants. Australian Journal of Ecology 17, 341348.CrossRefGoogle Scholar
Maiti, R.K., Hernández-Piñero, J.L., Valdés-Marroquín, M. (1994) Seed ultrastructure and germination of some species of Cactaceae. Phyton – International Journal of Experimental Botany 55, 97105.Google Scholar
Maiti, R.K., Singh, V.P., Baquie, A., Sánchez-Arreola, E., Wesche-Ebeling, P., Cuervo-Parra, J.A., Perdome-Velázquez, H. and Lorenzo, J.L. (2003) Cactus: Biology, propagation and conservation. Hisar, India, The Gaurav Society of Agricultural Research Information Centre.Google Scholar
Mandujano, M.D.C., Golubov, J., Montaña, C. (1997) Dormancy and endozoochorous dispersal of Opuntia rastrera seeds in the southern Chihuahuan Desert. Journal of Arid Environments 36, 259266.CrossRefGoogle Scholar
Mandujano, M.D.C., Montaña, C., Rojas-Aréchiga, M. (2005) Breaking seed dormancy in Opuntia rastrera from the Chihuahuan Desert. Journal of Arid Environments 62, 1521.CrossRefGoogle Scholar
Milberg, P., Andersson, L. and Thompson, K. (2000) Large-seeded species are less dependent on light for germination than small-seeded ones. Seed Science Research 10, 99104.CrossRefGoogle Scholar
Montiel, S., Montaña, C. (2003) Seed bank dynamics of the desert cactus Opuntia rastrera in two habitats from the Chihuahuan Desert. Plant Ecology 166, 241248.Google Scholar
Moreno, N., López, J.J. and Arce, L. (1992) Aspectos sobre las semillas y su germinación de Echinomastus mariposensis Hester. Cactáceas y Suculentas Mexicanas 37, 2127.Google Scholar
Nobel, P.S. (1988) Environmental biology of agaves and cacti. Cambridge, Cambridge University Press.Google Scholar
Nolasco, H., Vega-Villasante, F., Romero-Schmidt, H.L., Díaz-Rondero, A. (1996) The effects of salinity, acidity, light and temperature on the germination of seeds of cardón (Pachycereus pringlei (S. Wats.) Britton & Rose, Cactaceae). Journal of Arid Environments 33, 8794.CrossRefGoogle Scholar
Ortega-Baes, P., Godínez-Álvarez, H. (2006) Global diversity and conservation priorities in the Cactaceae Biodiversity and Conservation (in press). Available on-line at http://www.springerlink.com/(aqbwwxik1uiunb45ek4rjhfn)/app/home/contribution.asp?referrer=parent&backto=issue,78,89;journal,1,153;linkingpublicationresults,1:100125,1.Google Scholar
Pedroni, F., Sánchez, M. (1997) Dispersao de sementes de Pereskia aculeata Muller (Cactaceae) num fragmento florestal no sudeste do Brasil. Revista Brasileira de Biologia 57, 479486.Google Scholar
Pilcher, B.L. (1970) Germination of seeds of four species of Opuntia. Cactus and Succulent Journal (USA) 42, 281282.Google Scholar
Potter, R.L., Petersen, J.L. and Ueckert, D.N. (1984) Germination responses of Opuntia spp. to temperature, scarification, and other seed treatments. Weed Science 32, 106110.Google Scholar
Pons, T.L. (1991a) Dormancy, germination and mortality of seeds in a chalk-grassland flora. Journal of Ecology 79, 765780.CrossRefGoogle Scholar
Pons, T.L. (1991b) Induction of dark dormancy in seeds: its importance for the seed bank in the soil. Functional Ecology 5, 669675.CrossRefGoogle Scholar
Pons, T.L. (2000) Seed responses to light. pp. 237260. in Fenner, M.Seeds: The ecology of regeneration in plant communities 2nd edition. Wallingford, CABI Publishing.CrossRefGoogle Scholar
Reyes-Santiago, J., Gutiérrez de la Rosa, A., Brachet-Ize, C. and Mondragón-Larios, R. (2000). Algunas especies de la familia Cactaceae del norte de México propagadas en el Jardín Botánico, IB-UNAM. In Martínez-Ávalos, J.G. (Organizer) Memorias del II taller regional sobre cactáceas del noreste de México, Cd. Victoria, Tamps., Mexico.Google Scholar
Robbins, C.S. (2003) Prickly trade: trade and conservation of Chihuahuan desert cacti. pp. 148. Robbins, C.S.;, Bárcenas-Luna, R.T. (Eds) TRAFFIC North America. Washington, DC, World Wildlife Fund.Google Scholar
Rojas-Aréchiga, M. and Batis, A. (2001) Las semillas de cactáceas ¿Forman bancos en el suelo?. Cactáceas y Suculentas Mexicanas 46, 7682.Google Scholar
Rojas-Aréchiga, M., Vázquez-Yanes, C. (2000) Cactus seed germination: a review. Journal of Arid Environments 44, 85104.Google Scholar
Rojas-Aréchiga, M., Orozco-Segovia, A., Vázquez-Yanes, C. (1997) Effect of light on germination of seven species of cacti from the Zapotitlan Valley in Puebla, México. Journal of Arid Environments 36, 571578.CrossRefGoogle Scholar
Rojas-Aréchiga, M., Casas, A., Vázquez-Yanes, C. (2001) Seed germination of wild and cultivated Stenocereus stellatus (Cactaceae) from the Tehuacán-Cuicatlán Valley, Central México. Journal of Arid Environments 49, 279287.Google Scholar
Romero-Schmidt, H.L., Vega-Villasante, F., Nolasco, H., Montaño, C. (1992) The effect of darkness, freezing, acidity and salinity on seed germination of Ferocactus peninsulae (Cactaceae). Journal of Arid Environments 23, 389395.CrossRefGoogle Scholar
Sánchez-Venegas, G. (1997) Germinación, viabilidad y características distintivas de la semilla de Opuntia joconostle Weber, forma cuaresmero. Cactáceas y Suculentas Mexicanas 42, 1621.Google Scholar
Semarnat (2002). NORMA Oficial Mexicana NOM-059-ECOL-2001, Protección ambiental-Especies nativas de México de flora y fauna silvestres-Categorías de riesgo y especificaciones para su inclusión, exclusión o cambio-Lista de especies en riesgo. Secretaria de Medio Ambiente y Recursos Naturales. México, D.F, Diario Oficial de la Federación.Google Scholar
Small, J.G.C. and Gutterman, Y. (1992) A comparison of thermo- and skotodormancy in seeds of Lactuca serriola in terms of induction, alleviation, respiration, ethylene and protein synthesis. Plant Growth Regulation 11, 301310.CrossRefGoogle Scholar
Sokal, R.R. and Rohlf, F.J. (1994) Biometry: The principles and practice of statistics in biological research. New York, W.H. Freeman.Google Scholar
Steadman, K.J. (2004) Dormancy release during hydrated storage in Lolium rigidum seeds is dependent on temperature, light quality, and hydration status. Journal of Experimental Botany 55, 929937.Google Scholar
Taylorson, R.B. and Hendricks, S.B. (1973) Phytochrome transformation and action in seeds of Rumex crispus L. during secondary dormancy. Plant Physiology 52, 475479.Google Scholar
Tester, M. and Morris, C. (1987) The penetration of light through soil. Plant, Cell and Environment 10, 281286.CrossRefGoogle Scholar
Thanos, C.A. and Georghiou, K. (1988) On the mechanism of skotodormancy induction in Grand Rapids lettuce (Lactuca sativa L.) seeds. Journal of Plant Physiology 133, 580584.CrossRefGoogle Scholar
Thompson, K., Band, S.R. and Hodgson, J.G. (1993) Seed size and shape predict persistence in soil. Functional Ecology 7, 236241.CrossRefGoogle Scholar
Thompson, K., Jalili, A., Hodgson, J.G., Hamzeh'ee, B., Asri, Y., Shaw, S., Shirvany, A., Yazdani, S., Khoshnevis, M., Zarrinkamar, F., Ghahramani, M. and Safavi, R. (2001) Seed size, shape and persistence in the soil in an Iranian flora. Seed Science Research 11, 345355.Google Scholar
Zimmer, K. (1967) Temperatur und Keimung bei verschiedenen Kakteen. Kakteen und andere Sukkulenten 18, 3133.Google Scholar
Zimmer, K. (1972) Untersuchungen üben den Einfluβ der temperature auf die keimung von Kakteen-Saatgut. VIII. Zum Kältebedurfnis bei der keimung von Maihuenia poeppiggi (Otto) Web. Gartenbauwissenchaft 37, 109121.Google Scholar
Zimmer, K. (1980) Einfluβ der Temperatur auf die Keimung von Kakteensaatgut. X. Keimung einiger Ferocactus -Arten. Gartenbauwissenschaft 45, 121123.Google Scholar
Zimmer, K. (1998) Zur keimung von kakteensaatgut. Schumannia 2, 7584.Google Scholar