Published online by Cambridge University Press: 29 June 2022
Germination of seeds of some summer annuals in Kentucky (eastern USA) in late-winter lead to the hypothesis that under present climate conditions the whole length of the winter cold stratification (CS) period is not required for dormancy-break of seeds of summer annuals with physiological dormancy (PD). We evaluated our data from germination phenology studies of 45 species (69 datasets) and buried-seed studies of 33 species (44 datasets). We determined time and temperature of germination after CS and percentage of the total number of hours of CS during winter (% of winter CS) seeds received prior to start of germination. In the phenology studies, mean temperature during the week of first germination for C3 and C4 species was 11.1 and 14.4°C, respectively, and % of winter CS was 80.8 and 87.4, respectively. In the buried-seed studies, % of CS for C3 and C4 species was 40.8 and 48.1, respectively, when they germinated to 25% at 20/10°C. For 32 of 33 species in the buried-seed studies, the minimum temperature at which seeds germinated decreased with increased CS; thus, seeds had Type 2 non-deep PD. The time of germination is controlled by a number of hours of CS, a decrease in minimum temperature at which seeds can germinate and a temperature increase in early spring. Seeds can germinate at relatively high temperatures as early as December and January, but they continue to be CS until spring. Temperature increases in eastern North America due to global warming are not likely to inhibit the germination of summer annuals with PD in spring.