Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-25T04:15:07.811Z Has data issue: false hasContentIssue false

Classification and ecological relationships of seed dormancy in a seasonal moist tropical forest, Panama, Central America

Published online by Cambridge University Press:  01 June 2007

Adriana Sautu
Affiliation:
Department of Biology, University of Kentucky, Lexington, KY 40506-0225 USA Smithsonian Tropical Research Institute, Panama City, 34002-0948, Panama
Jerry M. Baskin*
Affiliation:
Department of Biology, University of Kentucky, Lexington, KY 40506-0225 USA
Carol C. Baskin
Affiliation:
Department of Biology, University of Kentucky, Lexington, KY 40506-0225 USA Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546-0312 USA
Jose Deago
Affiliation:
Smithsonian Tropical Research Institute, Panama City, 34002-0948, Panama
Richard Condit
Affiliation:
Smithsonian Tropical Research Institute, Panama City, 34002-0948, Panama
*
*Correspondence Fax: +1 859 257 1717 Email: [email protected]

Abstract

This is the first study to determine the class of seed dormancy (or non-dormancy) of a large number of native tree species in a tropical forest, the seasonal moist tropical forest of the Panama Canal Watershed (PCW), or to test the relationships between class of dormancy (or non-dormancy) and various seed and ecological characteristics of the constituent species. Fresh seeds of 49 of 94 tree species were non-dormant (ND), and 45 were dormant (D). Seeds of 23 species had physiological dormancy (PD), 13 physical dormancy (PY), two morphological dormancy (MD), 7 morphophysiological dormancy (MPD) and none combinational dormancy (PY+PD). Seeds with PY were significantly smaller ( < 0.1 g) and drier (moisture content < 16%) at maturity than those that were ND or in the other D classes. Seeds of 62, 42 and 53% of species dispersed in the early rainy, late rainy (LRS) and dry seasons, respectively, were ND. The majority (61%) of species with PD seeds, but only 17% of those with PY seeds, were dispersed in the LRS. The proportion of species with ND seeds was higher in large-size (63%) than in mid-size (35%) and understorey (17%) trees, but differed only slightly between non-pioneers (58%) and pioneers (54%). The proportion of species with D seeds increased only slightly through a precipitation gradient of about 3100 to 1900 mm in the PCW; however, PY increased from 19 to 32% and PD decreased from 63 to 44%.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acuña, P.I. and Garwood, N.C. (1987) Efecto de la luz y la escarificación en las semillas de cinco especies de árboles secundarios. Revista de Biología Tropical 35, 203207.Google Scholar
Almeida, M.J.B., Ferraz, I.D.K. and Bassin, F. (1999) Estudos sobre a permeabilidade do tegumento e a geminacão de sementes de Hymenaea courbaril L. (Caesalpiniaceae), uma especie de uso multiplo. Revista da Universidade do Amazonas: Série Ciências Agrárias, Manaus 8 (1–2), 6371.Google Scholar
Alvarez-Buylla, E.R. and Martínez-Ramos, M. (1992) Demography and allometry of Cecropia obtusifolia, a neotropical pioneer tree – an evaluation of the climax-pioneer paradigm for tropical rainforests. Journal of Ecology 80, 275290.CrossRefGoogle Scholar
Angevine, M.W. and Chabot, B.F. (1979) Seed germination syndromes in higher plants. pp. 188206in Solbrig, O.T.; Jain, S.; Johnson, G.B.; Raven, P.H. (Eds) Topics in plant population biology. New York, Columbia University Press.Google Scholar
Angiosperm Phylogeny Group (2003) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG II. Botanical Journal of the Linnean Society 141, 399436.CrossRefGoogle Scholar
Baskin, C.C. and Baskin, J.M. (1998) Seeds: Ecology, biogeography and evolution of dormancy and germination. San Diego, Academic Press.Google Scholar
Baskin, C.C. and Baskin, J.M. (2005) Seed dormancy in trees of climax tropical vegetation types. Tropical Ecology 46, 1728.Google Scholar
Baskin, J.M. and Baskin, C.C. (2003) Classification, biogeography, and phylogenetic relationships of seed dormancy. pp. 517544in Smith, R.D.; Dickie, J.B.; Linnington, S.H.; Pritchard, H.W.; Probert, R.J. (Eds) Seed conservation: Turning science into practice. Kew, Royal Botanic Gardens.Google Scholar
Baskin, J.M. and Baskin, C.C. (2004) A classification system for seed dormancy. Seed Science Research 14, 116.CrossRefGoogle Scholar
Baskin, J.M., Baskin, C.C. and Li, X. (2000) Taxonomy, anatomy and evolution of physical dormancy in seeds. Plant Species Biology 15, 139152.CrossRefGoogle Scholar
Baskin, J.M., Baskin, C.C. and Dixon, K.W. (2006) Physical dormancy in the endemic Australian genus Stylobasium, a first report for the family Surianaceae (Fabales). Seed Science Research 16, 229232.CrossRefGoogle Scholar
Brahmam, M. (1996) Effect of pre-sowing treatments for hastening the germination of Enterolobium cyclocarpum (Jacq.) Griseb. and Hymenaea courbaril L. Indian Forester 122, 740745.Google Scholar
Brahmam, M., Sree, A. and Saxena, C. (1996) Effect of pre-sowing treatments on the seed germination of Sapindus mukorossi Gaertn. and Sapindus trifoliatus L. (Sapindaceae). Advances in Plant Science 9, 137142.Google Scholar
Condit, R. (1998) Ecological implications of changes in drought patterns: Shifts in forest composition in Panama. Climatic Change 39, 413427.CrossRefGoogle Scholar
Condit, R., Hubbell, S.P. and Foster, R.B. (1996a) Changes in tree species abundance in a Neotropical forest: Impact of climatic change. Journal of Tropical Ecology 12, 231256.CrossRefGoogle Scholar
Condit, R., Hubbell, S.P. and Foster, R.B. (1996b) Assessing the response of plant functional types to climatic change in tropical forests. Journal of Vegetation Science 7, 405416.CrossRefGoogle Scholar
Condit, R., Robinson, W.D., Ibáñez, R., Aguilar, S., Sanjur, A., Martínez, R., Stallard, R.F., García, T., Angehr, G.R., Petit, L., Wright, S.J., Robinson, T.R. and Heckadon, S. (2001) The status of the Panama Canal Watershed and its biodiversity at the beginning of the 21st century. BioScience 51, 389398.CrossRefGoogle Scholar
Condit, R., Aguilar, S., Hernandez, A., Perez, R., Lao, S., Angehr, G., Hubbell, S.P. and Foster, R.B. (2004) Tropical forest dynamics across a rainfall gradient and the impact of an El Niño dry season. Journal of Tropical Ecology 20, 5172.CrossRefGoogle Scholar
Correa, A.M.D. (2003) Byrsonima crassifolia (L.) Kunth. pp. 342345in Vozzo, J.A. (Ed.) Tropical tree seed manual. Agriculture Handbook Number 721. Washington, DC, United States Department of Agriculture, Forest Service.Google Scholar
Dalling, J.W., Swaine, M.D. and Garwood, N.C. (1997) Soil seed bank community dynamics in seasonally moist lowland tropical forest, Panama. Journal of Tropical Ecology 13, 659680.CrossRefGoogle Scholar
D'Arcy, W.G. (1987) Flora of Panama. Part I. Introduction and checklist. St. Louis, Missouri Botanical Garden.Google Scholar
Daws, M.I., Orr, D., Burslem, D.F.R.P. and Mullins, C.E. (2006) The effect of high temperature on chalazal plug removal and germination of Apeiba tibourbou Aubl. Seed Science and Technology 34, 221225.CrossRefGoogle Scholar
Ferraz, I.D.K., Filho, N.L., Imakawa, A.M., Varela, V.P. and Piña-Rodrigues, F.C.M. (2004) Características básicas para um agrupamento ecológico preliminar de espécies madeireiras da floresta de terra firme da Amazônia Central. Acta Amazonica 34, 621633.CrossRefGoogle Scholar
Flores, E.M. (2002) Pseudosamanea guachapele (Kunth) Harms. pp. 666669in Vozzo, J.A. (Ed.) Tropical tree seed manual. Agriculture Handbook Number 721. Washington, DC, United States Department of Agriculture, Forest Service.Google Scholar
Flores, E.M., Rivera, D.I. and Vazquez, N.M. (1986) Germinación y desarrollo de la plántula de Cassia grandis L. (Caesalpinioideae). Revista de Biologia Tropical 34, 289296.Google Scholar
Garwood, N.C. (1983) Seed germination in a seasonal tropical forest in Panama: A community study. Ecological Monographs 53, 159181.CrossRefGoogle Scholar
Garwood, N.C. (1986) Constraints on the timing of seed germination in a tropical forest. pp. 347355in Estrada, A.; Fleming, T.H. (Eds) Frugivores and seed dispersal. Dordrecht, W. Junk Publishers.CrossRefGoogle Scholar
Geilfus, F. (1994) El Árbol al servicio del Agricultor. Turrialba, Costa Rica, Guía de especies CATIE.Google Scholar
Gill, L.S. and Bamidele, J.F. (1981) Seed morphology, germination and cytology of three savanna trees of Nigeria. Nigerian Journal of Forestry 11, 1623.Google Scholar
Grushvitzky, I.V. (1967) After-ripening of seeds of primitive tribes of angiosperms, conditions and peculiarities. pp. 329336 +figures 1–8. in Borriss, H. (Ed.) Physiologie, ökologie und biochemie der keimung. Griefswald, Germany, Ernst-Moritz-Arndt-Universitat.Google Scholar
Holdridge, L.R. (1967) Life zone ecology. San José, Costa Rica, Tropical Science Center.Google Scholar
Hubbell, S.P. and Foster, R.B. (1986) Commonness and rarity in a Neotropical forest: Implications for tropical tree conservation. pp. 205231in Soulé, M.E. (Ed.) Conservation biology: The science of scarcity and diversity. Sunderland, Massachusetts, Sinauer Associates.Google Scholar
Knight, D.H. (1975) A phytosociological analysis of species-rich tropical forest on Barro Colorado Island, Panama. Ecological Monographs 45, 259284.CrossRefGoogle Scholar
Marin, W.A. and Flores, E.M. (2002a) Copaifera aromatica Dwyer. pp. 405407in Vozzo, J.A. (Ed.) Tropical tree seed manual. Agriculture Handbook Number 721. Washington, DC, United States Department of Agriculture, Forest Service.Google Scholar
Marin, W.A. and Flores, E.M. (2002b) Copaifera camibar. pp. 408410in Vozzo, J.A (Ed.) Tropical tree seed manual. Agriculture Handbook Number 721. Washington, DC, United States Department of Agriculture, Forest Service.Google Scholar
Munson, R.H. (1984) Germination of western soapberry as affected by scarification and stratification. HortScience 19, 712713.CrossRefGoogle Scholar
Naidu, C.V., Rajendrudu, G. and Swamy, P.M. (1999) Effect of temperature and acid scarification on seed germination of Sapindus trifoliatus Vahl. Seed Science and Technology 27, 885892.Google Scholar
Naidu, C.V., Rajendrudu, G. and Swamy, P.M. (2000) Effect of plant growth regulators on seed germination of Sapindus trifoliatus Vahl. Seed Science and Technology 28, 249252.Google Scholar
Negi, A.K. and Todaria, N.P. (1993) Improvement of germination of some Himalayan tree seeds by temperature treatment. Seed Science and Technology 21, 675678.Google Scholar
Nikolaeva, M.G. (1977) Factors controlling the seed dormancy pattern. pp. 5174in Khan, A.A. (Ed.) The physiology and biochemistry of seed dormancy and germination. Amsterdam, North Holland.Google Scholar
Nikolaeva, M.G., Rasumova, M.V. and Gladkova, L.M. (1985) Reference book on dormant seed germination. Danilova, M.F. (Ed.) Leningrad, ‘Nauka’ Publishers (in Russian).Google Scholar
Pearson, T.R.H., Burslem, D.F.R.P., Mullins, C.E. and Dalling, J.W. (2002) Germination ecology of neotropical pioneers: Interacting effects of environmental conditions and seed size. Ecology 83, 27982807.CrossRefGoogle Scholar
Piña-Rodrigues, F.C.M. and Figliolia, M.B. (2005) Embryo immaturity associated with delayed germination in recalcitrant seeds of Virola surinamensis (Rol.) Warb. (Myristicaceae). Seed Science and Technology 33, 375386.CrossRefGoogle Scholar
Pritchard, H.W., Haye, A.J., Wright, W.J. and Steadman, K.J. (1995) A comparative study of seed viability of Inga species: Desiccation tolerance in relation to the physical characteristics and chemical composition of the embryo. Seed Science and Technology 23, 85100.Google Scholar
Pyke, C.R., Condit, R., Aguilar, S. and Lao, S. (2001) Floristic composition across a climatic gradient in a neotropical lowland forest. Journal of Vegetation Science 12, 553566.CrossRefGoogle Scholar
Ramalho Carvalho, P. (1994) Espécies florestais Brasileiras. Recomendações silviculturais, potencialdades e uso da Madeira. Brasil, Empresa Brasileira de Pesquisa Agropecuaria. Centro Nacional de Pesquiza de Florestas (EMBRAPA-CNPF)..Google Scholar
Salazar, R. (2000) Manejo de semillas de 100 especies forestales de América Latina, Vol. 1.CATIE. Proyecto de semillas forestales. Turrialba. Costa Rica, Danida Forest Seed Centre.Google Scholar
Sandi, C. and Flores, E.M. (2002) Prioria copaifera Grieseb. pp. 654656in Vozzo, J.A. (Ed.) Tropical tree seed manual. Agriculture Handbook Number 721. Washington, DC, United States Department of Agriculture, Forest Service.Google Scholar
Santiago, L.S., Kitajima, K., Wright, S.J. and Mulkey, S.S. (2004) Coordinated changes in photosynthesis, water relations and leaf nutritional traits of canopy trees along a precipitation gradient in lowland tropical forest. Oecologia 139, 495502.CrossRefGoogle ScholarPubMed
Sautu, A. (2004) Ecology, morphology, and germination physiology of tree seeds in a tropical semievergreen forest in the Panama Canal Watershed, with special reference to seed dormancy classes along a precipitation gradient. M.S. thesis, University of Kentucky, Lexington.Google Scholar
Sautu, A., Baskin, J.M., Baskin, C.C. and Condit, R. (2006) Studies on the seed biology of 100 native species of trees in a seasonal moist tropical forest, Panama, Central America. Forest Ecology and Management 234, 245263.CrossRefGoogle Scholar
Swaine, M.D. and Whitmore, T.C. (1988) On the definition of ecological species groups in tropical rain forests. Vegetatio 75, 8186.CrossRefGoogle Scholar
Tosi, J.A. (1971) Zonas de vida, una base ecologica para investigaciones silvícolas y inventariación forestal en la Republíca de Panamá. Rome, Organización de las Naciones Unidas para Agricultura y Alimentación.Google Scholar
Tweddle, J.C., Dickie, J.B., Baskin, C.C. and Baskin, J.M. (2003) Ecological aspects of seed desiccation sensitivity. Journal of Ecology 91, 294304.CrossRefGoogle Scholar
Tyree, M.T., Vargas, G., Engelbrecht, B.M.J. and Kursar, T.A. (2002) Drought until death do us part: A case study of the desiccation-tolerance of a tropical moist forest seedling-tree, Licania platypus (Hemsl.) Fritsch. Journal of Experimental Botany 53, 22392247.CrossRefGoogle Scholar
Vázquez-Yañez, C. (1974) Studies on the germination of seeds of Ochroma lagopus Swartz. Turrialba 24, 176179.Google Scholar
Vázquez-Yañez, C. and Perez-Garcia, B. (1976) Notas sobre la morfología y la anatomia de la testa de las semillas de Ochroma lagopus Sw. Turrialba 26, 310311.Google Scholar
Vega, C., Patiño, F. and Rodríguez, A.A. (1983) Viabilidad de semillas en 72 especies forestales tropicales almacenadas al medio ambiente. Tomo II. Quintana Roo, México, Instituto de Investigaciones Forestales.Google Scholar
Vora, R.S. (1989) Seed germination characteristics of selected native plants of the lower Rio Grande Valley, Texas. Journal of Range Management 42, 3640.CrossRefGoogle Scholar
Whitmore, T.C. (1989) Canopy gaps and the two major groups of forest trees. Ecology 70, 536538.CrossRefGoogle Scholar