Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-12T08:40:44.419Z Has data issue: false hasContentIssue false

Plant hormone interactions during seed dormancy release and germination

Published online by Cambridge University Press:  22 February 2007

Birgit Kucera
Affiliation:
Institute of Biology II, Botany/Plant Physiology, Albert-Ludwigs-University Freiburg, Schänzlestr. 1, D-79104, Freiburg, i. Br., Germany
Marc Alan Cohn
Affiliation:
Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, 302 Life Sciences Building, Baton Rouge, Louisiana 70803, USA
Gerhard Leubner-Metzger*
Affiliation:
Institute of Biology II, Botany/Plant Physiology, Albert-Ludwigs-University Freiburg, Schänzlestr. 1, D-79104, Freiburg, i. Br., Germany
*
*Correspondence: Fax: +49 761 2032612 Email: [email protected],; Website: The Seed Biology Place http://www.seedbiology.de/

Abstract

This review focuses mainly on eudicot seeds, and on the interactions between abscisic acid (ABA), gibberellins (GA), ethylene, brassinosteroids (BR), auxin and cytokinins in regulating the interconnected molecular processes that control dormancy release and germination. Signal transduction pathways, mediated by environmental and hormonal signals, regulate gene expression in seeds. Seed dormancy release and germination of species with coat dormancy is determined by the balance of forces between the growth potential of the embryo and the constraint exerted by the covering layers, e.g. testa and endosperm. Recent progress in the field of seed biology has been greatly aided by molecular approaches utilizing mutant and transgenic seeds of Arabidopsis thaliana and the Solanaceae model systems, tomato and tobacco, which are altered in hormone biology. ABA is a positive regulator of dormancy induction and most likely also maintenance, while it is a negative regulator of germination. GA releases dormancy, promotes germination and counteracts ABA effects. Ethylene and BR promote seed germination and also counteract ABA effects. We present an integrated view of the molecular genetics, physiology and biochemistry used to unravel how hormones control seed dormancy release and germination.

Type
Invited Review
Copyright
Copyright © Cambridge University Press 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adam, G. and Marquardt, V. (1986) Brassinosteroids. Phytochemistry 25, 17871799.CrossRefGoogle Scholar
Ali-Rachedi, S., Bouinot, D., Wagner, M.H., Bonnet, M., Sotta, B., Grappin, P. and Jullien, M. (2004) Changes in endogenous abscisic acid levels during dormancy release and maintenance of mature seeds: studies with the Cape Verde Islands ecotype, the dormant model of Arabidopsis thaliana. Planta 219, 479488.CrossRefGoogle ScholarPubMed
Altmann, T. (1999) Molecular physiology of brassinosteroids revealed by the analysis of mutants. Planta 208, 111.CrossRefGoogle ScholarPubMed
Babiker, A.G.T., Ma, Y.Q., Sugimoto, Y. and Inanaga, S. (2000) Conditioning period, CO 2 and GR24 influence ethylene biosynthesis and germination of Striga hermonthica. Physiologia Plantarum 109, 7580.CrossRefGoogle Scholar
Barroco, R.M., Van Poucke, K., Bergervoet, J.H.W., De Veylder, L., Groot, S.P.C., Inze, D. and Engler, G. (2005) The role of the cell cycle machinery in resumption of postembryonic development. Plant Physiology 137, 127140.CrossRefGoogle ScholarPubMed
Baskin, J.M. and Baskin, C.C. (2004) A classification system for seed dormancy. Seed Science Research 14, 116.CrossRefGoogle Scholar
Bassel, G.W., Zielinska, E., Mullen, R.T. and Bewley, J.D. (2004) Down-regulation of DELLA genes is not essential for germination of tomato, soybean, and Arabidopsis seeds. Plant Physiology 136, 27822789.CrossRefGoogle Scholar
Batge, S.L., Ross, J.J. and Reid, J.B. (1999) Abscisic acid levels in seeds of the gibberellin-deficient mutant lh-2 of pea (Pisum sativum). Physiologia Plantarum 105, 485490.CrossRefGoogle Scholar
Baumbusch, L.O., Hughes, D.W., Galau, G.A. and Jakobsen, K.S. (2004) LEC1, FUS3, ABI3 and Em expression reveals no correlation with dormancy in Arabidopsis. Journal of Experimental Botany 55, 7787.CrossRefGoogle ScholarPubMed
Beaudoin, N., Serizet, C., Gosti, F. and Giraudat, J. (2000) Interactions between abscisic acid and ethylene signaling cascades. Plant Cell 12, 11031115.CrossRefGoogle ScholarPubMed
Benech-Arnold, R.L., Giallorenzi, M.C., Frank, J. and Rodriguez, V. (1999) Termination of hull-imposed dormancy in developing barley grains is correlated with changes in embryonic ABA levels and sensitivity. Seed Science Research 9, 3947.CrossRefGoogle Scholar
Bensmihen, S., Rippa, S., Lambert, G., Jublot, D., Pautot, V., Granier, F., Giraudat, J. and Parcy, F. (2002) The homologous ABI5 and EEL transcription factors function antagonistically to fine-tune gene expression during late embryogenesis. Plant Cell 14, 13911403.CrossRefGoogle ScholarPubMed
Bensmihen, S., Giraudat, J. and Parcy, F. (2005) Characterization of three homologous basic leucine zipper transcription factors (bZIP) of the ABI5 family during Arabidopsis thaliana embryo maturation. Journal of Experimental Botany 56, 597603.CrossRefGoogle ScholarPubMed
Bewley, J.D. (1997a) Breaking down the walls – a role for endo-β-mannanase in release from seed dormancy?. Trends in Plant Science 2, 464469.CrossRefGoogle Scholar
Bewley, J.D. (1997b) Seed germination and dormancy. Plant Cell 9, 10551066.CrossRefGoogle ScholarPubMed
Bewley, J.D. and Fountain, D.W. (1972) A distinction between the actions of abscisic acid, gibberellic acid and cytokinins in light-sensitive lettuce seed. Planta 102, 368371.CrossRefGoogle ScholarPubMed
Bialek, K., Michalczuk, L. and Cohen, J.D. (1992) Auxin biosynthesis during seed germination in Phaseolus vulgaris. Plant Physiology 100, 509517.CrossRefGoogle ScholarPubMed
Bleecker, A.B., Estelle, M.A., Somerville, C. and Kende, H. (1988) Insensitivity to ethylene conferred by a dominant mutation in Arabidopsis thaliana. Science 241, 10861089.CrossRefGoogle ScholarPubMed
Bogatek, R., Come, D., Corbineau, F., Ranjan, R. and Lewak, S. (2002) Jasmonic acid affects dormancy and sugar catabolism in germinating apple embryos. Plant Physiology and Biochemistry 40, 167173.CrossRefGoogle Scholar
Bove, J., Lucas, P., Godin, B., Ogé, L., Jullien, M. and Grappin, P. (2005) Gene expression analysis by cDNA-AFLP highlights a set of new signaling networks and translational control during seed dormancy breaking in Nicotiana plumbaginifolia. Plant Molecular Biology 57, 593612.CrossRefGoogle ScholarPubMed
Brady, S.M. and McCourt, P. (2003) Hormone cross-talk in seed dormancy. Journal of Plant Growth Regulation 22, 2531.CrossRefGoogle Scholar
Brady, S.M., Sarkar, S.F., Bonetta, D. and McCourt, P. (2003) The ABSCISIC ACID INSENSITIVE 3 (ABI3) gene is modulated by farnesylation and is involved in auxin signaling and lateral root development in Arabidopsis. Plant Journal 34, 6775.CrossRefGoogle ScholarPubMed
Brocard-Gifford, I.M., Lynch, T.J. and Finkelstein, R.R. (2003) Regulatory networks in seeds integrating developmental, abscisic acid, sugar, and light signaling. Plant Physiology 131, 7892.CrossRefGoogle ScholarPubMed
Brocard-Gifford, I., Lynch, T.J., Garcia, M.E., Malhotra, B. and Finkelstein, R.R. (2004) The Arabidopsis thaliana ABSCISIC ACID-INSENSITIVE8 locus encodes a novel protein mediating abscisic acid and sugar responses essential for growth. Plant Cell 16, 406421.CrossRefGoogle Scholar
Calvo, A.P., Nicolas, C., Nicolas, G. and Rodriguez, D. (2004) Evidence of a cross-talk regulation of a GA 20-oxidase (FsGA20ox1) by gibberellins and ethylene during the breaking of dormancy in Fagus sylvatica seeds. Physiologia Plantarum 120, 623630.CrossRefGoogle Scholar
Cao, D., Hussain, A., Cheng, H. and Peng, J. (2005) Loss of function of four DELLA genes leads to light- and gibberellin-independent seed germination in Arabidopsis PlantaGoogle Scholar
Cervantes, E., Rodriques, A. and Nicolas, G. (1994) Ethylene regulates the expression of a cysteine proteinase gene during germination of chickpea (Cicer arietinum L.). Plant Molecular Biology 25, 207215.CrossRefGoogle ScholarPubMed
Chae, S.H., Yoneyama, K., Takeuchi, Y. and Joel, D.M. (2004) Fluridone and norflurazon, carotenoid-biosynthesis inhibitors, promote seed conditioning and germination of the holoparasite Orobanche minor. Physiologia Plantarum 120, 328337.CrossRefGoogle ScholarPubMed
Chang, C.R. (2003) Ethylene signaling: the MAPK module has finally landed. Trends in Plant Science 8, 365368.CrossRefGoogle ScholarPubMed
Chen, F., Nonogaki, H. and Bradford, K.J. (2002) A gibberellin-regulated xyloglucan endotransglycosylase gene is expressed in the endosperm cap during tomato seed germination. Journal of Experimental Botany 53, 215223.CrossRefGoogle ScholarPubMed
Chiwocha, S.D.S., Cutler, A.J., Abrams, S.R., Ambrose, S.J., Yang, J., Ross, A.R.S. and Kermode, A.R. (2005) The etr1-2 mutation in Arabidopsis thaliana affects the abscisic acid, auxin, cytokinin and gibberellin metabolic pathways during maintenance of seed dormancy, moist-chilling and germination. Plant Journal 42, 3548.CrossRefGoogle ScholarPubMed
Clerkx, E.J.M., Blankestijn-De, Vries, H., Ruys, G.J., Groot, S.P.C. and Koorneef, M. (2003) Characterization of green seed, an enhancer of abi3-1 in Arabidopsis that affects seed longevity. Plant Physiology 132, 10771084.CrossRefGoogle ScholarPubMed
Cohn, M.A. (1996) Operational and philosophical decisions in seed dormancy research. Seed Science Research 6, 147153.CrossRefGoogle Scholar
Cohn, M.A. and Butera, D.L. (1982) Seed dormancy in red rice (Oryza sativa). 2. Response to cytokinins. Weed Science 30, 200205.CrossRefGoogle Scholar
Corbineau, F., Bagniol, S. and Come, D. (1990) Sunflower (Helianthus annuus L.) seed dormancy and its regulation by ethylene. Israel Journal of Botany 39, 313325.Google Scholar
Cutler, S., Ghassemian, M., Bonetta, D., Cooney, S. and McCourt, P. (1996) A protein farnesyl transferase involved in abscisic acid signal transduction in Arabidopsis. Science 273, 12391241.CrossRefGoogle ScholarPubMed
da, Silva, E.A.A., Toorop, P.E., van Aelst, A.C., Hilhorst, H.W.M. (2004) Abscisic acid controls embryo growth potential and endosperm cap weakening during coffee (Coffea arabica cv. Rubi) seed germination. Planta 220, 251261.CrossRefGoogle ScholarPubMed
da, Silva, E.A.A., Toorop, P.E., Nijsse, J., Bewley, J.D., Hilhorst, H.W.M. (2005) Exogenous gibberellins inhibit coffee (Coffea arabica cv. Rubi) seed germination and cause cell death in the embryo. Journal of Experimental Botany 413, 10291038.CrossRefGoogle Scholar
Debeaujon, I. and Koornneef, M. (2000) Gibberellin requirement for Arabidopsis seed germination is determined both by testa characteristics and embryonic abscisic acid. Plant Physiology 122, 415424.CrossRefGoogle ScholarPubMed
Debeaujon, I., Léon-Kloosterziel, K.M. and Koornneef, M. (2000) Influence of the testa on seed dormancy, germination, and longevity in Arabidopsis. Plant Physiology 122, 403413.CrossRefGoogle ScholarPubMed
Derkx, M. and Karssen, C.M. (1993) Effects of light and temperature on seed dormancy and gibberellin-stimulated germination in Arabidopsis thaliana – Studies with gibberellin-deficient and gibberellin-insensitive mutants. Physiologia Plantarum 89, 360368.CrossRefGoogle Scholar
Dewar, J., Taylor, J.R.N. and Berjak, P. (1998) Changes in selected plant growth regulators during germination in sorghum. Seed Science Research 8, 18.CrossRefGoogle Scholar
Dharmasiri, N., Dharmasiri, S. and Estelle, M. (2005) The F-box protein TIR1 is an auxin receptor. Nature 435, 441445.CrossRefGoogle ScholarPubMed
Dill, A. and Sun, T.P. (2001) Synergistic derepression of gibberellin signaling by removing RGA and GAI function in Arabidopsis thaliana. Genetics 159, 777785.CrossRefGoogle ScholarPubMed
Duque, P. and Chua, N.H. (2003) IMB1, a bromodomain protein induced during seed imbibition, regulates ABA- and phyA-mediated responses of germination in Arabidopsis. Plant Journal 35, 787799.CrossRefGoogle ScholarPubMed
Dutta, S., Bradford, K.J. and Nevins, D.J. (1997) Endo-β-mannanase activity present in cell wall extracts of lettuce endosperm prior to radicle emergence. Plant Physiology 113, 155161.CrossRefGoogle ScholarPubMed
Emery, R.J.N., Ma, Q., Atkins, C.A. (2000) The forms and sources of cytokinins in developing white lupine seeds and fruits. Plant Physiology 123, 15931604.CrossRefGoogle Scholar
Esashi, Y. (1991) Ethylene and seed germination. pp. 133157. in Mattoo, A.K., Suttle, J.C. (Eds) The plant hormone ethylene. Boca Raton, Florida CRC Press.Google Scholar
Ezcurra, I., Wycliffe, P., Nehlin, L., Ellerstrom, M. and Rask, L. (2000) Transactivation of the Brassica napus napin promoter by ABI3 requires interaction of the conserved B2 and B3 domains of ABI3 with different cis-elements: B2 mediates activation through an ABRE, whereas B3 interacts with an RY/G-box. Plant Journal 24, 5766.CrossRefGoogle ScholarPubMed
Fennimore, S.A. and Foley, M.E. (1998) Genetic and physiological evidence for the role of gibberellic acid in the germination of dormant Avena fatua seeds. Journal of Experimental Botany 49, 8994.CrossRefGoogle Scholar
Feurtado, J.A., Ambrose, S.J., Cutler, A.J., Ross, A.R.S., Abrams, S.R. and Kermode, A.R. (2004) Dormancy termination of western white pine ( Pinus monticola Dougl. Ex D. Don) seeds is associated with changes in abscisic acid metabolism. Planta 218, 630639.CrossRefGoogle ScholarPubMed
Finkelstein, R.R. (1994) Maternal effects govern variable dominance of two abscisic acid response mutations in Arabidopsis thaliana. Plant Physiology 105, 12031208.CrossRefGoogle ScholarPubMed
Finkelstein, R.R. (2004) The role of hormones during seed development and germination. pp. 513537. in Davies, P.J. (Ed.) Plant hormones – Biosynthesis, signal transduction, action!. Dordrecht, Kluwer Academic.Google Scholar
Finkelstein, R.R. and Gibson, S.I. (2002) ABA and sugar interactions regulating development: cross-talk or voices in a crowd?. Current Opinion in Plant Biology 5, 2632.CrossRefGoogle ScholarPubMed
Finkelstein, R.R. and Lynch, T.J. (2000) The Arabidopsis abscisic acid response gene ABI5 encodes a basic leucine zipper transcription factor. Plant Cell 12, 599609.CrossRefGoogle ScholarPubMed
Finkelstein, R.R., Wang, M.L., Lynch, T.J., Rao, S. and Goodman, H.M. (1998) The Arabidopsis abscisic acid response locus ABI4 encodes an APETALA2 domain protein. Plant Cell 10, 10431054.CrossRefGoogle ScholarPubMed
Finkelstein, R.R., Gampala, S.S.L. and Rock, C.D. (2002) Abscisic acid signaling in seeds and seedlings. Plant Cell 14, S15S45CrossRefGoogle ScholarPubMed
Fischer-Iglesias, C. and Neuhaus, G. (2001) Zygotic embryogenesis – Hormonal control of embryo development. pp. 223247. in Bhojwani, S.S.;, Soh, W.Y. (Eds) Current trends in the embryology of angiosperms. Dordrecht, Kluwer Academic.CrossRefGoogle Scholar
Footitt, S., Slocombe, S.P., Larner, V., Kurup, S., Wu, Y., Larson, T., Graham, I., Baker, A. and Holdsworth, M. (2002) Control of germination and lipid mobilization by COMATOSE, the Arabidopsis homologue of human ALDP. EMBO Journal 21, 29122922.CrossRefGoogle ScholarPubMed
Frey, A., Audran, C., Marin, E., Sotta, B., Marion-Poll, A. (1999) Engineering seed dormancy by the modification of zeaxanthin epoxidase gene expression. Plant Molecular Biology 39, 12671274.CrossRefGoogle ScholarPubMed
Frey, A., Godin, B., Bonnet, M., Sotta, B., Marion-Poll, A. (2004) Maternal synthesis of abscisic acid controls seed development and yield in Nicotiana plumbaginifolia. Planta 218, 958964.CrossRefGoogle ScholarPubMed
Gallardo, K., Job, C., Groot, S.P.C., Puype, M., Demol, H., Vandekerckhove, J. and Job, D. (2002a) Importance of methionine biosynthesis for Arabidopsis seed germination and seedling growth. Physiologia Plantarum 116, 238247.CrossRefGoogle ScholarPubMed
Gallardo, K., Job, C., Groot, S.P.C., Puype, M., Demol, H., Vandekerckhove, J. and Job, D. (2002b) Proteomics of Arabidopsis seed germination. A comparative study of wild-type and gibberellin-deficient seeds. Plant Physiology 129, 823837.CrossRefGoogle ScholarPubMed
Gao, Y.P., Young, L., Bonhamsmith, P. and Gusta, L.V. (1999) Characterization and expression of plasma and tonoplast membrane aquaporins in primed seed of Brassica napus during germination under stress conditions. Plant Molecular Biology 40, 635644.CrossRefGoogle ScholarPubMed
Ghassemian, M., Nambara, E., Cutler, S., Kawaide, H., Kamiya, Y. and McCourt, P. (2000) Regulation of abscisic acid signaling by the ethylene response pathway in Arabidopsis. Plant Cell 12, 11171126.CrossRefGoogle ScholarPubMed
Gómez-Jiménez, M.C., Garcia-Olivares, E. and Matilla, A.J. (2001) 1-Aminocyclopropane-1-carboxylate oxidase from embryonic axes of germinating chick-pea (Cicer arietinum L.) seeds: cellular immunolocalization and alterations in its expression by indole-3-acetic acid, abscisic acid and spermine. Seed Science Research 11, 243253.Google Scholar
Gonai, T., Kawahara, S., Tougou, M., Satoh, S., Hashiba, T., Hirai, N., Kawaide, H., Kamiya, Y. and Yoshioka, T. (2004) Abscisic acid in the thermoinhibition of lettuce seed germination and enhancement of its catabolism by gibberellin. Journal of Experimental Botany 55, 111118.CrossRefGoogle ScholarPubMed
Gonzalez-Guzman, M., Abia, D., Salinas, J., Serrano, R. and Rodriguez, P.L. (2004) Two new alleles of the abscisic aldehyde oxidase 3 gene reveal its role in abscisic acid biosynthesis in seeds. Plant Physiology 135, 325333.CrossRefGoogle ScholarPubMed
Gorecki, R.J., Ashino, H., Satoh, S. and Esahi, Y. (1991) Ethylene production in pea and cocklebur seeds of differing vigour. Journal of Experimental Botany 42, 407414.CrossRefGoogle Scholar
Grappin, P., Bouinot, D., Sotta, B., Miginiac, E. and Jullien, M. (2000) Control of seed dormancy in Nicotiana plumbaginifolia: post-imbibition abscisic acid synthesis imposes dormancy maintenance. Planta 210, 279285.CrossRefGoogle ScholarPubMed
Groot, S.P.C. and Karssen, C.M. (1987) Gibberellins regulate seed germination in tomato by endosperm weakening: A study with gibberellin-deficient mutants. Planta 171, 525531.CrossRefGoogle ScholarPubMed
Groot, S.P.C. and Karssen, C.M. (1992) Dormancy and germination of abscisic acid-deficient tomato seeds. Plant Physiology 99, 952958.CrossRefGoogle ScholarPubMed
Groot, S.P.C., Bruinsma, J. and Karssen, C.M. (1987) The role of endogenous gibberellin in seed and fruit development of tomato: Studies with a gibberellin-deficient mutant. Physiologia Plantarum 71, 184190.CrossRefGoogle Scholar
Guan, L.Q.M. and Scandalios, J.G. (2002) Catalase gene expression in response to auxin-mediated developmental signals. Physiologia Plantarum 114, 288295.CrossRefGoogle ScholarPubMed
Hall, M.A., Moshkov, I.E., Novikova, G.V., Mur, L.A.J., Smith, A.R. (2001) Ethylene signal perception and transduction: multiple paradigms?. Biological Reviews 76, 103128.CrossRefGoogle ScholarPubMed
Hartweck, L.M., Scott, C.L. and Olszewski, N.E. (2002) Two O -linked N-acetylglucosamine transferase genes of Arabidopsis thaliana L. Heynh. Have overlapping functions necessary for gamete and seed development. Genetics 161, 12791291.CrossRefGoogle ScholarPubMed
Hays, D.B., Yeung, E.C. and Pharis, R.P. (2002) The role of gibberellins in embryo axis development. Journal of Experimental Botany 53, 17471751.CrossRefGoogle ScholarPubMed
He, Y.H. and Gan, S.S. (2004) A novel zinc-finger protein with a proline-rich domain mediates ABA-regulated seed dormancy in Arabidopsis. Plant Molecular Biology 54, 19.CrossRefGoogle ScholarPubMed
Hilhorst, H.W.M. (1995) A critical update on seed dormancy. I. Primary dormancy. Seed Science Research 5, 6173.CrossRefGoogle Scholar
Hilhorst, H.W.M. and Downie, B. (1995) Primary dormancy in tomato (Lycopersicon esculentum cv. Moneymaker): Studies with the sitiens mutant. Journal of Experimental Botany 47, 8997.CrossRefGoogle Scholar
Hilhorst, H.W.M. and Karssen, C.M. (1992) Seed dormancy and germination: the role of abscisic acid and gibberellins and the importance of hormone mutants. Plant Growth Regulation 11, 225238.CrossRefGoogle Scholar
Hobo, T., Kowyama, Y. and Hattori, T. (1999) A bZIP factor, TRAB1, interacts with VP1 and mediates abscisic acid-induced transcription. Proceedings of the National Academy of Sciences, USA 96, 1534815353.CrossRefGoogle ScholarPubMed
Holdsworth, M., Lenton, J., Flintham, J., Gale, M., Kurup, S., McKibbin, R., Bailey, P., Larner, V. and Russell, L. (2001) Genetic control mechanisms regulating the initiation of germination. Journal of Plant Physiology 158, 439445.CrossRefGoogle Scholar
Homrichhausen, T.M., Hewitt, J.R. and Nonogaki, H. (2003) Endo-β-mannanase activity is associated with the completion of embryogenesis in imbibed carrot (Daucus carota L.) seeds. Seed Science Research 13, 219227.CrossRefGoogle Scholar
Hugouvieux, V., Murata, Y., Young, J.J., Kwak, J.M., Mackesy, D.Z. and Schroeder, J.I. (2002) Localization, ion channel regulation, and genetic interactions during abscisic acid signaling of the nuclear mRNA cap-binding protein, ABH1. Plant Physiology 130, 12761287.CrossRefGoogle ScholarPubMed
Huijser, C., Kortstee, A., Pego, J., Weisbeek, P., Wisman, E. and Smeekens, S. (2000) The Arabidopsis SUCROSE UNCOUPLED-6 gene is identical to ABSCISIC ACID INSENSITIVE-4: involvement of abscisic acid in sugar responses. Plant Journal 23, 577585.CrossRefGoogle ScholarPubMed
Izhaki, A., Swain, S.M., Tseng, T.S., Borochov, A., Olszewski, N.E. and Weiss, D. (2001) The role of SPY and its TPR domain in the regulation of gibberellin action throughout the life cycle of Petunia hybrida plants. Plant Journal 28, 181190.CrossRefGoogle ScholarPubMed
Jiang, L., Abrams, S.R. and Kermode, A.R. (1996) Vicilin and napin storage-protein gene promoters are responsive to abscisic acid in developing tobacco seed but lose sensitivity following premature desiccation. Plant Physiology 110, 11351144.CrossRefGoogle ScholarPubMed
Jones, H.D., Kurup, S., Peters, N.C.B. and Holdsworth, M.J. (2000) Identification and analysis of proteins that interact with the Avena fatua homologue of the maize transcription factor VIVIPAROUS 1. Plant Journal 21, 133142.CrossRefGoogle ScholarPubMed
Jones-Held, S., Vandoren, M. and Lockwood, T. (1996) Brassinolide application to Lepidium sativum seeds and the effects on seedling growth. Journal of Plant Growth Regulation 15, 6367.CrossRefGoogle Scholar
Kamiya, Y., Garcia-Martinez, J.L. (1999) Regulation of gibberellin biosynthesis by light. Current Opinion in Plant Biology 2, 398403.CrossRefGoogle ScholarPubMed
Karssen, C.M., Laçka, E. (1986) A revision of the hormone balance theory of seed dormancy: Studies on gibberellin and/or abscisic acid-deficient mutants of Arabidopsis thaliana. pp. 315323. in Bopp, M. (Ed.) Plant growth substances 1985. Berlin, Springer-Verlag.CrossRefGoogle Scholar
Karssen, C.M., Brinkhorst-van, der, Swan, D.L.C., Breekland, A.E. and Koornneef, M. (1983) Induction of dormancy during seed development by endogenous abscisic acid: Studies on abscisic acid deficient genotypes of Arabidopsis thaliana (L.) Heynh. Planta 157, 158165.CrossRefGoogle ScholarPubMed
Karssen, C.M., Zagórsky, S., Kepczynski, J., Groot, S.P.C. (1989) Key role for endogenous gibberellins in the control of seed germination. Annals of Botany 63, 7180.CrossRefGoogle Scholar
Karssen, C.M., Hilhorst, H.W.M. and Koornneef, M. (1990) The benefit of biosynthesis and response mutants to the study of the role of abscisic acid in plants. pp. 2331. in Pharis, R.P., Rood, S.B.Plant growth substances 1988. Berlin, Springer-Verlag.CrossRefGoogle Scholar
Katagiri, T., Ishiyama, K., Kato, T., Tabata, S., Kobayashi, M. and Shinozaki, K. (2005) An important role of phosphatidic acid in ABA signaling during germination in Arabidopsis thaliana. Plant Journal 43, 107117.CrossRefGoogle ScholarPubMed
Kepczynski, J. and Kepczynska, E. (1997) Ethylene in seed dormancy and germination. Physiologia Plantarum 101, 720726.CrossRefGoogle Scholar
Khan, A.A. (1975) Primary, preventive and permissive roles of hormones in plant systems. Botanical Review 41, 391420.CrossRefGoogle Scholar
Kincaid, R.R. (1935) The effects of certain environmental factors on the germination of Florida cigar-wrapper tobacco seeds. Technical Bulletin University Florida, Agricultural Experiment Stations 277, 547.Google Scholar
Kinoshita, T., Cano-Delgado, A., Seto, H., Hiranuma, S., Fujioka, S., Yoshida, S. and Chory, J. (2005) Binding of brassinosteroids to the extracellular domain of plant receptor kinase BRI1. Nature 433, 167171.CrossRefGoogle Scholar
Klee, H.J. (2004) Ethylene signal transduction. Moving beyond Arabidopsis. Plant Physiology 135, 660667.CrossRefGoogle ScholarPubMed
Koornneef, M. and Karssen, C.M. (1994) Seed dormancy and germination. pp. 313334. in Meyerowitz, E.M., Somerville, C.R. (Eds) Arabidopsis. New York, Cold Spring Harbor Laboratory Press.Google Scholar
Koornneef, M., Bentsink, L. and Hilhorst, H. (2002) Seed dormancy and germination. Current Opinion in Plant Biology 5, 3336.CrossRefGoogle ScholarPubMed
Kretsch, T., Emmler, K., Schäfer, E. (1995) Spatial and temporal pattern of light-regulated gene expression during tobacco seedling development: The photosystem II-related genes Lhcb (Cab) and PsbP (Oee2). Plant Journal 7, 715729.CrossRefGoogle Scholar
Krock, B., Schmidt, S., Hertweck, C. and Baldwin, I.T. (2002) Vegetation-derived abscisic acid and four terpenes enforce dormancy in seeds of the post-fire annual, Nicotiana attenuata. Seed Science Research 12, 239252.CrossRefGoogle Scholar
Kushiro, T., Okamoto, M., Nakabayashi, K., Yamagishi, K., Kitamura, S., Asami, T., Hirai, N., Koshiba, T., Kamiya, Y. and Nambara, E. (2004) The Arabidopsis cytochrome P450 CYP707A encodes ABA 8?-hydroxylases: key enzymes in ABA catabolism. EMBO Journal 23, 16471656.CrossRefGoogle Scholar
Lapik, Y.R. and Kaufman, L.S. (2003) The Arabidopsis cupin domain protein AtPirin1 interacts with the G protein alpha-subunit GPA1 and regulates seed germination and early seedling development. Plant Cell 15, 15781590.CrossRefGoogle Scholar
Lashbrook, C.C., Tieman, D.M. and Klee, H.J. (1998) Differential regulation of the tomato ETR gene family throughout plant development. Plant Journal 15, 243252.CrossRefGoogle ScholarPubMed
Lee, J.H. and Kim, W.T. (2003) Molecular and biochemical characterization of VR-EILs encoding mung bean ETHYLENE INSENSITIVE3-LIKE proteins. Plant Physiology 132, 14751488.CrossRefGoogle ScholarPubMed
Lee, S.C., Cheng, H., King, K.E., Wang, W.F., He, Y.W., Hussain, A., Lo, J., Harberd, N.P. and Peng, J.R. (2002) Gibberellin regulates Arabidopsis seed germination via RGL2, a GAI/RGA -like gene whose expression is up-regulated following imbibition. Genes and Development 16, 646658.CrossRefGoogle ScholarPubMed
Leon-Kloosterziel, K.M., van de, Bunt, G.A., Zeevaart, J.A.D. and Koornneef, M. (1996) Arabidopsis mutants with a reduced seed dormancy. Plant Physiology 110, 233240.CrossRefGoogle ScholarPubMed
Leubner-Metzger, G. (2001) Brassinosteroids and gibberellins promote tobacco seed germination by distinct pathways. Planta 213, 758763.CrossRefGoogle ScholarPubMed
Leubner-Metzger, G. (2002) Seed after-ripening and over-expression of class I β-1,3-glucanase confer maternal effects on tobacco testa rupture and dormancy release. Planta 215, 959968.CrossRefGoogle Scholar
Leubner-Metzger, G. (2003a) Brassinosteroids promote seed germination. pp. 119128. in Hayat, S., Ahmad, A.Brassinosteroids: Bioactivity and crop productivity. Dordrecht, Kluwer Academic.CrossRefGoogle Scholar
Leubner-Metzger, G. (2003b) Functions and regulation of β-1,3-glucanase during seed germination, dormancy release and after-ripening. Seed Science Research 13, 1734.CrossRefGoogle Scholar
Leubner-Metzger, G. (2005a) Hormonal interactions during seed dormancy release and germination. Min Basra, A.S. (Eds) Handbook of Seed Science and Technology. New York, Haworth press, (in press).Google Scholar
Leubner-Metzger, G. (2005b) β-1,3-Glucanase gene expression in low-hydrated seeds as a mechanism for dormancy release during tobacco after-ripening. Plant Journal 41, 133145.CrossRefGoogle ScholarPubMed
Leubner-Metzger, G. and Meins, F. (2000) Sense transformation reveals a novel role for class I β-1,3-glucanase in tobacco seed germination. Plant Journal 23, 215221.CrossRefGoogle Scholar
Leubner-Metzger, G., Petruzzelli, L., Waldvogel, R., Vögeli-Lange, R. and Meins, F. (1998) Ethylene-responsive element binding protein (EREBP) expression and the transcriptional regulation of class I β-1,3-glucanase during tobacco seed germination. Plant Molecular Biology 38, 785795.CrossRefGoogle Scholar
Leung, J. and Giraudat, J. (1998) Abscisic acid signal transduction. Annual Review of Plant Physiology and Plant Molecular Biology 49, 199222.CrossRefGoogle ScholarPubMed
Li, B.L. and Foley, M.E. (1997) Genetic and molecular control of seed dormancy. Trends in Plant Science 2, 384389.CrossRefGoogle Scholar
Lindgren, L.O., Stalberg, K.G., Höglund, A.-S. (2003) Seed-specific overexpression of an endogenous Arabidopsis phytoene synthase gene results in delayed germination and increased levels of carotenoids, chlorophyll, and abscisic acid. Plant Physiology 132, 779785.CrossRefGoogle ScholarPubMed
Liotenberg, S., North, H., Marion-Poll, A. (1999) Molecular biology and regulation of abscisic acid biosynthesis in plants. Plant Physiology and Biochemistry 37, 341350.CrossRefGoogle Scholar
Liptay, A. and Schopfer, P. (1983) Effect of water stress, seed coat restraint, and abscisic acid upon different germination capabilities of two tomato lines at low temperature. Plant Physiology 73, 935938.CrossRefGoogle ScholarPubMed
Liu, P.-P., Koizuka, N., Homrichhausen, T.M., Hewitt, J.R., Martin, R.C. and Nonogaki, H. (2005) Large-scale screening of Arabidopsis enhancer-trap lines for seed germination-associated genes. Plant Journal 41, 936944.CrossRefGoogle ScholarPubMed
Ljung, K., Östin, A., Lioussanne, L. and Sandberg, G. (2001) Developmental regulation of indole-3-acetic acid turnover in scots pine seedlings. Plant Physiology 125, 464475.CrossRefGoogle ScholarPubMed
Lohrmann, J. and Harter, K. (2002) Plant two-component signaling systems and the role of response regulators. Plant Physiology 128, 363369.CrossRefGoogle ScholarPubMed
Lopez-Molina, L., Mongrand, S., Chua, N.-H. (2001) A postgermination developmental arrest checkpoint is mediated by abscisic acid and requires ABI5 transcription factor in Arabidopsis. Proceedings of the National Academy of Sciences, USA 98, 47824787.CrossRefGoogle ScholarPubMed
Lopez-Molina, L., Mongrand, B., McLachlin, D.T., Chait, B.T. and Chua, N.H. (2002) ABI5 acts downstream of ABI3 to execute an ABA-dependent growth arrest during germination. Plant Journal 32, 317328.CrossRefGoogle ScholarPubMed
Lopez-Molina, L., Mongrand, S., Kinoshita, N. and Chua, N.H. (2003) AFP is a novel negative regulator of ABA signaling that promotes ABI5 protein degradation. Genes and Development 17, 410418.CrossRefGoogle ScholarPubMed
Lorenzo, O., Nicolas, C., Nicolas, G. and Rodriguez, D. (2002) Molecular cloning of a functional protein phosphatase 2C (FsPP2C2) with unusual features and synergistically up-regulated by ABA and calcium in dormant seeds of Fagus sylvatica. Physiologia Plantarum 114, 482490.CrossRefGoogle ScholarPubMed
Lu, C., Han, M.H., Guevara-Garcia, A. and Fedoroff, N.V. (2002) Mitogen-activated protein kinase signaling in postgermination arrest of development by abscisic acid. Proceedings of the National Academy of Sciences, USA 99, 1581215817.CrossRefGoogle ScholarPubMed
Manz, B., Müller, K., Kucera, B., Volke, F., Leubner-Metzger, G. (2005) Water uptake and distribution in germinating tobacco seeds investigated in vivo by nuclear magnetic resonance imaging. Plant Physiology 138, 15381551.CrossRefGoogle ScholarPubMed
Marin, E., Nussaume, L., Quesada, A., Gonneau, M., Sotta, B., Hugueney, P., Frey, A., Marion-Poll, A. (1996) Molecular identification of zeaxanthin epoxidase of Nicotiana plumbaginifolia, a gene involved in abscisic acid biosynthesis and corresponding to the ABA locus of Arabidopsis thaliana. EMBO Journal 15, 23312342.CrossRefGoogle Scholar
Matilla, A.J. (2000) Ethylene in seed formation and germination. Seed Science Research 10, 111126.CrossRefGoogle Scholar
McCarty, D.R. (1995) Genetic control and integration of maturation and germination pathways in seed development. Annual Review of Plant Physiology and Plant Molecular Biology 46, 7193.CrossRefGoogle Scholar
McGinnis, K.M., Thomas, S.G., Soulea, J.D., Straderc, L.C., Zalea, J.M., Sunb, T.-P. and Steber, C.M. (2003) The Arabidopsis SLEEPY1 gene encodes a putative F-box subunit of an SCF E3 ubiquitin ligase. Plant Cell 15, 11201130.CrossRefGoogle ScholarPubMed
Mo, B. and Bewley, J.D. (2003) The relationship between beta-mannosidase and endo-beta-mannanase activities in tomato seeds during and following germination: a comparison of seed populations and individual seeds. Journal of Experimental Botany 54, 25032510.CrossRefGoogle ScholarPubMed
Mohamed, A.H., Ejeta, G. and Housley, T.L. (2001) Striga asiatica seed conditioning and 1-aminocyclopropane-1-carboxylate oxidase activity. Weed Research 41, 165176.CrossRefGoogle Scholar
Mok, D.W.S. and Mok, M.C. (2001) Cytokinin metabolism and action. Annual Review of Plant Physiology and Plant Molecular Biology 52, 89118.CrossRefGoogle ScholarPubMed
Mönke, G., Altschmied, L., Tewes, A., Reidt, W., Mock, H.P., Bäumlein, H. and Conrad, U. (2004) Seed-specific transcription factors ABI3 and FUS3: molecular interaction with DNA. Planta 219, 158166.CrossRefGoogle ScholarPubMed
Müller, K., Heß, B., Leubner-Metzger, G. (2006) A role for reactive oxygen species in endosperm weakening in Adkins, S.;, Ashmore, S., Navie, S. (Eds) Proceedings of the 8th international workshop on seeds, May 2005, Brisbane, Australia. Wallingford, CABI Publishing.Google Scholar
Mussig, C., Shin, G.-H. and Altmann, T. (2003) Brassinosteroids promote root growth in Arabidopsis. Plant Physiology 133, 12611271.CrossRefGoogle ScholarPubMed
Nakabayashi, K., Okamoto, M., Koshiba, T., Kamiya, Y. and Nambara, E. (2005) Genome-wide profiling of stored mRNA in Arabidopsis thaliana seed germination: epigenetic and genetic regulation of transcription in seed. Plant Journal 41, 697709.CrossRefGoogle ScholarPubMed
Nakaminami, K., Sawada, Y., Suzuki, M., Kenmoku, H., Kawaide, H., Mitsuhashi, W., Sassa, T., Inoue, Y., Kamiya, Y. and Toyomasu, T. (2003) Deactivation of gibberellin by 2-oxidation during germination of photoblastic lettuce seeds. Bioscience, Biotechnology and Biochemistry 67, 15511558.CrossRefGoogle ScholarPubMed
Nambara, E., Marion-Poll, A. (2003) ABA action and interactions in seeds. Trends in Plant Science 8, 213217.CrossRefGoogle ScholarPubMed
Nambara, E., Satoshi, N. and McCourt, P. (1992) A mutant of Arabidopsis which is defective in seed development and storage protein accumulation is a new abi3 allele. Plant Journal 2, 435441.CrossRefGoogle Scholar
Nambara, E., Kawaide, H., Kamiya, Y. and Naito, S. (1998) Characterization of an Arabidopsis thaliana mutant that has a defect in ABA accumulation: ABA-dependent and ABA-independent accumulation of free amino acids during dehydration. Plant and Cell Physiology 39, 853858.CrossRefGoogle Scholar
Nambara, E., Suzuki, M., Abrams, S., McCarty, D.R., Kamiya, Y. and McCourt, P. (2002) A screen for genes that function in abscisic acid signaling in Arabidopsis thaliana. Genetics 161, 12471255.CrossRefGoogle ScholarPubMed
Nelson, J.M. and Sharples, G.C. (1980) Stimulation of tomato, pepper and sugarbeet seed germination at low temperatures by growth regulators. Journal of Seed Technology 5, 6268.Google Scholar
Ng, D.W.K., Chandrasekharan, M.B. and Hall, T.C. (2004) The 5? UTR negatively regulates quantitative and spatial expression from the ABI3 promoter. Plant Molecular Biology 54, 2538.CrossRefGoogle ScholarPubMed
Ni, B.R. and Bradford, K.J. (1993) Germination and dormancy of abscisic acid-deficient and gibberellin-deficient mutant tomato (Lycopersicon esculentum) seeds – Sensitivity of germination to abscisic acid, gibberellin, and water potential. Plant Physiology 101, 607617.CrossRefGoogle Scholar
Nicolas, C., Deprada, J.M., Lorenzo, O., Nicolas, G. and Rodriguez, D. (1998) Abscisic acid and stress regulate the expression of calmodulin in germinating chick-pea seeds. Physiologia Plantarum 104, 379384.CrossRefGoogle Scholar
Nishimura, N., Yoshida, T., Murayama, M., Asami, T., Shinozaki, K. and Hirayama, T. (2004) Isolation and characterization of novel mutants affecting the abscisic acid sensitivity of Arabidopsis germination and seedling growth. Plant and Cell Physiology 45, 14851499.CrossRefGoogle ScholarPubMed
Nonogaki, H., Gee, O.H. and Bradford, K.J. (2000) A germination-specific endo-β-mannanase gene is expressed in the micropylar endosperm cap of tomato seeds. Plant Physiology 123, 12351245.CrossRefGoogle ScholarPubMed
Ogawa, M., Hanada, A., Yamauchi, Y., Kuwahara, A., Kamiya, Y. and Yamaguchi, S. (2003) Gibberellin biosynthesis and response during Arabidopsis seed germination. Plant Cell 15, 15911604.CrossRefGoogle ScholarPubMed
Ohta, M., Ohme-Takagi, M. and Shinshi, H. (2000) Three ethylene-responsive transcription factors in tobacco with distinct transactivation functions. Plant Journal 22, 2938.CrossRefGoogle ScholarPubMed
Osakabe, Y., Maruyama, K., Seki, M., Satou, M., Shinozaki, K., Yamaguchi-Shinozaki, K. (2005) Leucine-rich repeat receptor-like kinase1 is a key membrane-bound regulator of abscisic acid early signaling in Arabidopsis. Plant Cell 17, 11051119.CrossRefGoogle ScholarPubMed
Ouaked, F., Rozhon, W., Lecourieux, D. and Hirt, H. (2003) A MAPK pathway mediates ethylene signaling in plants. EMBO Journal 22, 12821288.CrossRefGoogle ScholarPubMed
Papi, M., Sabatini, S., Bouchez, D., Camilleri, C., Costantino, P. and Vittorioso, P. (2000) Identification and disruption of an Arabidopsis zinc finger gene controlling seed germination. Genes and Development 14, 2833.CrossRefGoogle ScholarPubMed
Peeters, A.J.M., Blankestijn-DeVries, H., Hanhart, C.J., Leon-Kloosterziel, K.M., Zeevaart, J.A.D. and Koornneef, M. (2002) Characterization of mutants with reduced seed dormancy at two novel rdo loci and a further characterization of rdo1 and rdo2 in Arabidopsis. Physiologia Plantarum 115, 604612.CrossRefGoogle Scholar
Penfield, S., Rylott, E.L., Gilday, A.D., Graham, S., Larson, T.R. and Graham, I.A. (2004) Reserve mobilization in the Arabidopsis endosperm fuels hypocotyl elongation in the dark, is independent of abscisic acid, and requires PHOSPHOENOLPYRUVATE CARBOXYKINASE1. Plant Cell 16, 27052718.CrossRefGoogle ScholarPubMed
Peng, J. and Harberd, N.P. (2002) The role of GA-mediated signalling in the control of seed germination. Current Opinion in Plant Biology 5, 376381.CrossRefGoogle ScholarPubMed
Petruzzelli, L., Harren, F., Perrone, C. and Reuss, J. (1995) On the role of ethylene in seed germination and early growth of Pisum sativum. Journal of Plant Physiology 145, 8386.CrossRefGoogle Scholar
Petruzzelli, L., Kunz, C., Waldvogel, R., Meins, F., Leubner-Metzger, G. (1999) Distinct ethylene- and tissue-specific regulation of β-1,3-glucanases and chitinases during pea seed germination. Planta 209, 195201.CrossRefGoogle ScholarPubMed
Petruzzelli, L., Coraggio, I., Leubner-Metzger, G. (2000) Ethylene promotes ethylene biosynthesis during pea seed germination by positive feedback regulation of 1-aminocyclopropane-1-carboxylic acid oxidase. Planta 211, 144149.CrossRefGoogle ScholarPubMed
Petruzzelli, L., Müller, K., Hermann, K., Leubner-Metzger, G. (2003a) Distinct expression patterns of β-1,3-glucanases and chitinases during the germination of Solanaceous seeds. Seed Science Research 13, 139153.CrossRefGoogle Scholar
Petruzzelli, L., Sturaro, M., Mainieri, D., Leubner-Metzger, G. (2003b) Calcium requirement for ethylene-dependent responses involving 1-aminocyclopropane-1-carboxylic acid oxidase in radicle tissues of germinated pea seeds. Plant, Cell and Environment 26, 661671.CrossRefGoogle Scholar
Phillips, J., Artsaenko, O., Fiedler, U., Horstmann, C., Mock, H.P., Müntz, K. and Conrad, U. (1997) Seed-specific immunomodulation of abscisic acid activity induces a developmental switch. EMBO Journal 16, 44894496.CrossRefGoogle ScholarPubMed
Preston, C.A., Betts, H. and Baldwin, I.T. (2002) Methyl jasmonate as an allelopathic agent: Sagebush inhibits germination of a neighboring tobacco, Nicotiana attenuata. Journal of Chemical Ecology 28, 23432369.CrossRefGoogle ScholarPubMed
Pritchard, S.L., Charlton, W.L., Baker, A. and Graham, I.A. (2002) Germination and storage reserve mobilization are regulated independently in Arabidopsis. Plant Journal 31, 639647.CrossRefGoogle ScholarPubMed
Puga-Hermida, M.I., Gallardo, M., Rodriguez-Gacio, M.D. and Matilla, A.J. (2003) The heterogeneity of turnip-tops (Brassica rapa) seeds inside the silique affects germination, the activity of the final step of the ethylene pathway, and abscisic acid and polyamine content. Functional Plant Biology 30, 767775.CrossRefGoogle ScholarPubMed
Rajjou, L., Gallardo, K., Debeaujon, I., Vandekerckhove, J., Job, C. and Job, D. (2004) The effect of α-amanitin on the Arabidopsis seed proteome highlights the distinct roles of stored and neosynthesized mRNAs during germination. Plant Physiology 134, 15981613.CrossRefGoogle ScholarPubMed
Ramaih, S., Guedira, M. and Paulsen, G.M. (2003) Relationship of indoleacetic acid and tryptophan to dormancy and preharvest sprouting of wheat. Functional Plant Biology 30, 939945.CrossRefGoogle ScholarPubMed
Raz, V., Bergervoet, J.H.W. and Koornneef, M. (2001) Sequential steps for developmental arrest in Arabidopsis seeds. Development 128, 243252.CrossRefGoogle ScholarPubMed
Razem, F.A., Luo, M., Liu, J.-H., Abrams, S.R. and Hill, R.D. (2004) Purification and characterization of a barley aleurone abscisic acid-binding protein. Journal of Biological Chemistry 279, 99229929.CrossRefGoogle ScholarPubMed
Richards, D.E., King, K.E., Aitali, T. and Harberd, N.P. (2001) How gibberellin regulates plant growth and development: A molecular genetic analysis of gibberellin signaling. Annual Review of Plant Physiology and Plant Molecular Biology 52, 6788.CrossRefGoogle ScholarPubMed
Rohde, A., Vanmontagu, M. and Boerjan, W. (1999) The ABSCISIC ACID-INSENSITIVE 3 (ABI3) gene is expressed during vegetative quiescence processes in Arabidopsis. Plant, Cell and Environment 22, 261270.CrossRefGoogle Scholar
Rohde, A., Kurup, S. and Holdsworth, M. (2000) ABI3 emerges from the seed. Trends in Plant Science 5, 418419.CrossRefGoogle ScholarPubMed
Romagosa, I., Prada, D., Moralejo, M.A., Sopena, A., Munoz, P., Casas, A.M., Swanston, J.S., Molina-Cano, J.L. (2001) Dormancy ABA content and sensitivity of a barley mutant to ABA application during seed development and after ripening. Journal of Experimental Botany 52, 14991506.CrossRefGoogle ScholarPubMed
Ross, J., O'Neill, D. (2001) New interactions between classical plant hormones. Trends in Plant Science 6, 24.CrossRefGoogle ScholarPubMed
Rousselin, P., Kraepiel, Y., Maldiney, R., Miginiac, E. and Caboche, M. (1992) Characterization of three hormone mutants of Nicotiana plumbaginifolia: evidence for a common ABA deficiency. Theoretical and Applied Genetics 85, 213221.CrossRefGoogle ScholarPubMed
Rugutt, K.J., Rugutt, J.K. and Berner, D.K. (2003) In vitro germination of Striga hermonthica and Striga aspera seeds by 1-aminocyclopropane-1-carboxylic acid. Natural Products Research 17, 4762.CrossRefGoogle Scholar
Russell, L., Larner, V., Kurup, S., Bougourd, S. and Holdsworth, M. (2000) The Arabidopsis COMATOSE locus regulates germination potential. Development 127, 37593767.CrossRefGoogle ScholarPubMed
Saini, H.S., Consolacion, E.D., Bassi, P.K. and Spencer, M.S. (1989) Control processes in the induction and relief of thermoinhibition of lettuce seed germination. Actions of phytochrome and endogenous ethylene. Plant Physiology 90, 311315.CrossRefGoogle ScholarPubMed
Schmidt, J., Altmann, T. and Adam, G. (1997) Brassinosteroids from seeds of Arabidopsis thaliana. Phytochemistry 45, 13251327.CrossRefGoogle ScholarPubMed
Schmitz, N., Abrams, S.R. and Kermode, A.R. (2002) Changes in ABA turnover and sensitivity that accompany dormancy termination of yellow-cedar (Chamaecyparis nootkatensis) seeds. Journal of Experimental Botany 53, 89101.Google ScholarPubMed
Schopfer, P. and Plachy, C. (1984) Control of seed germination by abscisic acid. II. Effect on embryo water uptake in Brassica napus L. Plant Physiology 76, 155160.CrossRefGoogle ScholarPubMed
Schopfer, P. and Plachy, C. (1993) Photoinhibition of radish (Raphanus sativus L.) seed germination: control of growth potential by cell-wall yielding in the embryo. Plant, Cell and Environment 16, 223229.CrossRefGoogle Scholar
Schwachtje, J. and Baldwin, I.T. (2004) Smoke exposure alters endogenous gibberellin and abscisic acid pools and gibberellin sensitivity while eliciting germination in the post-fire annual. Nicotiana attenuata. Seed Science Research 14, 5160.CrossRefGoogle Scholar
Schwechheimer, C. and Bevan, M.W. (1998) The regulation of transcription factor activity in plants. Trends in Plant Science 3, 378383.CrossRefGoogle Scholar
Schweighofer, A., Hirt, H. and Meskiene, I. (2004) Plant PP2C phosphatases: emerging functions in stress signaling. Trends in Plant Science 9, 236243.CrossRefGoogle ScholarPubMed
Silverstone, A.L., Mak, P., Martinez, E.C. and Sun, T.P. (1997) The new RGA locus encodes a negative regulator of gibberellin response in Arabidopsis thaliana. Genetics 146, 10871099.CrossRefGoogle ScholarPubMed
Singh, D.P., Jermakow, A.M. and Swain, S.M. (2002) Gibberellins are required for seed development and pollen tube growth in Arabidopsis. Plant Cell 14, 31333147.CrossRefGoogle ScholarPubMed
Siriwitayawan, G., Geneve, R.L. and Downie, A.B. (2003) Seed germination of ethylene perception mutants of tomato and Arabidopsis. Seed Science Research 13, 303314.CrossRefGoogle Scholar
Sisler, E.C. and Serek, M. (2003) Compounds interacting with the ethylene receptor in plants. Plant Biology 5, 473480.CrossRefGoogle Scholar
Söderman, E.M., Brocard, I.M., Lynch, T.J. and Finkelstein, R.R. (2000) Regulation and function of the Arabidopsis ABA-insensitive4 gene in seed and abscisic acid response signaling networks. Plant Physiology 124, 17521765.CrossRefGoogle ScholarPubMed
Solano, R., Stepanova, A., Chao, Q.M. and Ecker, J.R. (1998) Nuclear events in ethylene signaling: a transcriptional cascade mediated by ETHYLENE-INSENSITIVE3 and ETHYLENE-RESPONSE-FACTOR1. Genes and Development 12, 37033714.CrossRefGoogle ScholarPubMed
Spollen, W.G., LeNoble, M.E., Samuels, T.D., Bernstein, N. and Sharp, R.E. (2000) Abscisic acid accumulation maintains maize primary root elongation at low water potentials by restricting ethylene production. Plant Physiology 122, 967976.CrossRefGoogle ScholarPubMed
Steber, C.M. and McCourt, P. (2001) A role for brassinosteroids in germination in Arabidopsis. Plant Physiology 125, 763769.CrossRefGoogle ScholarPubMed
Steber, C.M., Cooney, S.E. and McCourt, P. (1998) Isolation of the GA-response mutant sly1 as a suppressor of ABI1-1 in Arabidopsis thaliana. Genetics 149, 509521.CrossRefGoogle ScholarPubMed
Steinbach, H.S., Benech-Arnold, R. and Sanchez, R.A. (1997) Hormonal regulation of dormancy in developing sorghum seeds. Plant Physiology 113, 149154.CrossRefGoogle ScholarPubMed
Stepanova, A.N. and Alonso, J.M. (2005) Ethylene signalling and response pathway: a unique signalling cascade with a multitude of inputs and outputs. Physiologia Plantarum 123, 195206.CrossRefGoogle Scholar
Strader, L.C., Ritchie, S., Soule, J.D., McGinnis, K.M. and Steber, C.M. (2004) Recessive-interfering mutations in the gibberellin signaling gene SLEEPY1 are rescued by overexpression of its homologue, SNEEZY. Proceedings of the National Academy of Sciences, USA 101, 1277112776.CrossRefGoogle ScholarPubMed
Sugimoto, Y., Ali, A.M., Yabuta, S., Kinoshita, H., Inanaga, S. and Itai, A. (2003) Germination strategy of Striga hermonthica involves regulation of ethylene biosynthesis. Physiologia Plantarum 119, 137145.CrossRefGoogle Scholar
Sun, T. and Kamiya, Y. (1994) The Arabidopsis GA1 locus encodes the cyclase ent -kaurene synthetase A of gibberellin biosynthesis. Plant Cell 6, 15091518.Google ScholarPubMed
Suzuki, M., Kao, C.Y., Cocciolone, S. and McCarty, D.R. (2001) Maize VP1 complements Arabidopsis abi3 and confers a novel ABA/auxin interaction in roots. Plant Journal 28, 409418.CrossRefGoogle ScholarPubMed
Suzuki, M., Ketterling, M.G., Li, Q.B., McCarty, D.R. (2003) Viviparous1 alters global gene expression patterns through regulation of abscisic acid signaling. Plant Physiology 132, 16641677.CrossRefGoogle ScholarPubMed
Swain, S.M., Reid, J.B. and Kamiya, Y. (1997) Gibberellins are required for embryo growth and seed development in pea. Plant Journal 12, 13291338.CrossRefGoogle Scholar
Swain, S.M., Tseng, T.S. and Olszewski, N.E. (2001) Altered expression of SPINDLY affects gibberellin response and plant development. Plant Physiology 126, 11741185.CrossRefGoogle ScholarPubMed
Szekeres, M. (2003) Brassinosteroid and systemin: two hormones perceived by the same receptor. Trends in Plant Science 8, 102104.CrossRefGoogle ScholarPubMed
Tadeo, F.R., Gomezcadenas, A., Bencheikh, W., Primomillo, E. and Talon, M. (1997) Gibberellin–ethylene interaction controls radial expansion in citrus roots. Planta 202, 370378.CrossRefGoogle Scholar
Takeuchi, Y., Worsham, A.D. and Awad, A.E. (1991) Effects of brassinolide on conditioning and germination of witchweed (Striga asiatica) seeds. pp. 298305. Cuttler, H.G., Yokota, T.;, Adam, G. (Eds) Brassinosteroids: Chemistry, bioactivity and applications. Washington, DC, American Chemical Society.CrossRefGoogle Scholar
Takeuchi, Y., Omigawa, Y., Ogasawara, M., Yoneyama, K., Konnai, M. and Worsham, A.D. (1995) Effects of brassinosteroids on conditioning and germination of clover broomrape (Orobanche minor) seeds. Plant Growth Regulation 16, 153160.CrossRefGoogle Scholar
Teale, W.D., Paponov, I.A., Ditengou, F. and Palme, K. (2005) Auxin and the developing root of Arabidopsis thaliana. Physiologia Plantarum 123, 130138.CrossRefGoogle Scholar
Theodoulou, F.L., Job, K., Slocombe, S.P., Footitt, S., Holdsworth, M., Baker, A., Larson, T.R. and Graham, I.A. (2005) Jasmonic acid levels are reduced in COMATOSE ATP-binding cassette transporter mutants. Implications for transport of jasmonate precursors into peroxisomes. Plant Physiology 137, 835840.CrossRefGoogle ScholarPubMed
Thompson, A.J., Jackson, A.C., Symonds, R.C., Mulholland, B.J., Dadswell, A.R., Blake, P.S., Burbidge, A. and Taylor, I.B. (2000) Ectopic expression of a tomato 9-cis-epoxycarotenoid dioxygenase gene causes over-production of abscisic acid. Plant Journal 23, 363374.CrossRefGoogle ScholarPubMed
Toorop, P.E., van Aelst, A.C., Hilhorst, H.W.M. (2000) The second step of the biphasic endosperm cap weakening that mediates tomato (Lycopersicon esculentum) seed germination is under control of ABA. Journal of Experimental Botany 51, 13711379.Google ScholarPubMed
Toorop, P.E., Barroco, R.M., Engler, G., Groot, S.P.C., Hilhorst, H.W.M. (2005) Differentially expressed genes associated with dormancy or germination of Arabidopsis thaliana seeds. Planta 221, 637647.CrossRefGoogle ScholarPubMed
Toyomasu, T., Tsuji, H., Yamane, H., Nakayama, M., Yamaguchi, I., Murofushi, N., Takahashi, N. and Inoue, Y. (1993) Light effects on endogenous levels of gibberellins in photoblastic lettuce seeds. Journal of Plant Growth Regulation 12, 8590.CrossRefGoogle Scholar
Toyomasu, T., Kawaide, H., Mitsuhashi, W., Inoue, Y. and Kamiya, Y. (1998) Phytochrome regulates gibberellin biosynthesis during germination of photoblastic lettuce seeds. Plant Physiology 118, 15171523.CrossRefGoogle ScholarPubMed
Tyler, L., Thomas, S.G., Hu, J., Dill, A., Alonso, J.M., Ecker, J.R. and Sun, T.P. (2004) DELLA proteins and gibberellin-regulated seed germination and floral development in Arabidopsis. Plant Physiology 135, 10081019.CrossRefGoogle ScholarPubMed
Ullah, H., Chen, J.G., Wang, S.C. and Jones, A.M. (2002) Role of a heterotrimeric G protein in regulation of Arabidopsis seed germination. Plant Physiology 129, 897907.CrossRefGoogle ScholarPubMed
Van Hengel, A.J. and Roberts, K. (2003) AtAGP30, an arabinogalactan-protein in the cell walls of the primary root, plays a role in root regeneration and seed germination. Plant Journal 36, 256270.CrossRefGoogle Scholar
Walz, A., Park, S., Slovin, J.P., LudwigMuller, J., Momonoki, Y.S. and Cohen, J.D. (2002) A gene encoding a protein modified by the phytohormone indoleacetic acid. Proceedings of the National Academy of Sciences, USA 99, 17181723.CrossRefGoogle ScholarPubMed
Wen, C.K. and Chang, C. (2002) Arabidopsis RGL1 encodes a negative regulator of gibberellin responses. Plant Cell 14, 87100.CrossRefGoogle ScholarPubMed
White, C.N. and Rivin, C.J. (2000) Gibberellins and seed development in maize. II. Gibberellin synthesis inhibition enhances abscisic acid signaling in cultured embryos. Plant Physiology 122, 10891097.CrossRefGoogle ScholarPubMed
White, C.N., Proebsting, W.M., Hedden, P. and Rivin, C.J. (2000) Gibberellins and seed development in maize. I. Evidence that gibberellin/abscisic acid balance governs germination versus maturation pathways. Plant Physiology 122, 10811088.CrossRefGoogle Scholar
Wobus, U. and Weber, H. (1999) Sugars as signal molecules in plant seed development. Biological Chemistry 380, 937944.CrossRefGoogle ScholarPubMed
Wu, C.-T., Leubner-Metzger, G., Meins, F., Jr Bradford, K.J. (2000) Class I β-1,3-glucanase and chitinase are expressed in the micropylar endosperm of tomato seeds prior to radicle emergence. Plant Physiology 126, 12991313.CrossRefGoogle Scholar
Xiong, L., Gong, Z., Rock, C.D., Subramanian, S., Guo, Y., Xu, W., Galbraith, D. and Zhu, J.K. (2001) Modulation of abscisic acid signal transduction and biosynthesis by an Sm-like protein in Arabidopsis. Developmental Cell 1, 771781.CrossRefGoogle ScholarPubMed
Yamaguchi, S. and Kamiya, Y. (2002) Gibberellins and light-stimulated seed germination. Journal of Plant Growth Regulation 20, 369376.CrossRefGoogle Scholar
Yamaguchi, S., Smith, M.W., Brown, R.G.S., Kamiya, Y. and Sun, T.P. (1998) Phytochrome regulation and differential expression of gibberellin 3β-hydroxylase genes in germinating Arabidopsis seeds. Plant Cell 10, 21152126.Google ScholarPubMed
Yamaguchi, S., Kamiya, Y. and Sun, T.P. (2001) Distinct cell-specific expression patterns of early and late gibberellin biosynthetic genes during Arabidopsis seed germination. Plant Journal 28, 443453.CrossRefGoogle ScholarPubMed
Yamaguchi, T., Wakizuka, T., Hirai, K., Fujii, S. and Fujita, A. (1987) Stimulation of germination in aged rice seeds by pretreatment with brassinolide. Proceedings of the Plant Growth Regulation Society of America 14, 2627.Google Scholar
Yamaguchi-Shinozaki, K., Mino, M., Mundy, J., Chua, N.-H. (1990) Analysis of an ABA-responsive rice gene promoter in transgenic tobacco. Plant Molecular Biology 15, 905912.CrossRefGoogle Scholar
Yamauchi, Y., Ogawa, M., Kuwahara, A., Hanada, A., Kamiya, Y. and Yamaguchi, S. (2004) Activation of gibberellin biosynthesis and response pathways by low temperature during imbibition of Arabidopsis thaliana seeds. Plant Cell 16, 367378.CrossRefGoogle ScholarPubMed
Yoshioka, T., Endo, T. and Satoh, S. (1998) Restoration of seed germination at supraoptimal temperatures by fluridone, an inhibitor of abscisic acid biosynthesis. Plant and Cell Physiology 39, 307312.CrossRefGoogle Scholar
Zeng, Y., Raimondi, N. and Kermode, A.R. (2003) Role of an ABI3 homologue in dormancy maintenance of yellow-cedar seeds and in the activation of storage protein and Em gene promoters. Plant Molecular Biology 51, 3949.CrossRefGoogle ScholarPubMed
Zhang, X., Garreton, V., Chua, N.-H. (2005) The AIP2 E3 ligase acts as a novel negative regulator of ABA signaling by promoting ABI3 degradation. Genes and Development 19, 15321543.CrossRefGoogle ScholarPubMed