Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-18T17:47:40.730Z Has data issue: false hasContentIssue false

Germination of 110-year-old cereal and weed seeds, the Vienna Sample of 1877. Verification of effective ultra-dry storage at ambient temperature

Published online by Cambridge University Press:  19 September 2008

A.M. Steiner*
Affiliation:
Institute of Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, D-70593 Stuttgart, Germany
P. Ruckenbauer
Affiliation:
Institute of Crop Science and Plant Breeding, University of Agronomy Vienna, A-1180 Vienna, Austria
*
*correrpondence

Abstract

After 110 years of hermetic sealed storage at temperatures between 10 and 15°C and at a moisture content of 3.12%, Hordeum vulgare showed 90% germination and Avena sativa 81%. In addition, some seeds of Agrostemma githago, Lolium temulentum, Sinapis alba, Sinapis arvensis, and Vaccaria hispanica were still capable of germinating. This demonstrates that ultra-dry, long-term seed storage under ambient temperature conditions can successfully be achieved with the intention of cutting down risks and costs in germplasm conservation.

Type
Physiology and Biochemistry
Copyright
Copyright © Cambridge University Press 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aufhammer, G. and Simon, U. (1957) Die Samen land-wirtschaftlicher Kulturpflanzen im Grundstein des ehemaligen Nürnberger Stadttheaters und ihre Keimfähigkeit (The seeds of agricultural crops in the foundation stone of the former Nuremberg town theatre and their germination). Zeitschrift für Acker- und Pflanzenbau 103, 454472.Google Scholar
Bewley, J.D. and Black, M. (1982) Physiology and biochemistry of seeds in relation to germination. Volume 2. Springer-Verlag, Berlin-Heidelberg-New York.CrossRefGoogle Scholar
Bickelmann, U., Steiner, A.M. and Ruckenbauer, P. (1988) Variabilität eines Österreichisch-ungarischen Landhafers (Avena sativa L.) aus dem Jahre 1877 – elektrophoretische Untersuchung der Prolamine (Variability of an Austro–Hungarian landrace of oat (Avena sativa L.) of the year 1877 – electrophoretic analysis of prolamins).Arbeitstagung der Arbeitsgemeinschaft der Saatzuchtleiter der Vereinigung österreichischer Pflanzenzüchter an der Bundesanstalt für alpenländische Landwirtschaft Gumpenstein, Irdning, 8188.Google Scholar
Chin, H.F. (1994) Seedbanks: conserving the past for the future. Seed Science and Technology 22, 385400.Google Scholar
Dickie, J.B., Ellis, R.H., Kraak, H.L., Ryder, K. and Tompsett, P.B. (1990) Temperature and seed storage longevity. Annals of Botany 65, 197204.CrossRefGoogle Scholar
Dimitriewicz, N. (1875) Wie lange bewahren die Samen unserer Culturpflanzen ihre Keimfähigkeit? (How long do seeds of our crops maintain their germination capacity?). In Haberlandt, F., (Ed.) Wissenschaftlich-praktische Untersuchungen auf dem Gebiet des Pflanzenbaus. Volume 1. Druck und Verlag Carl Gerold's Sohn, Wien.Google Scholar
Ellis, R.H. and Roberts, E.H. (1980) Improved equations for the prediction of seed longevity. Annals of Botany 45, 1330.CrossRefGoogle Scholar
Ellis, R.H., Hong, T.D., Roberts, E.H. (1989) A comparison of the low-moisture-content limit to the logarithmic relation between seed moisture and longevity in twelve species. Annals of Botany 63, 601611.CrossRefGoogle Scholar
Ellis, R.H., Hong, T.D., Roberts, E.H. and Tao, K.L. (1990) Low moisture content limits to relations between seed longevity and moisture. Annals of Botany 65, 493504.CrossRefGoogle Scholar
Ellis, R.H., Hong, T.D., Martin, M.C., Pérez Garcia, F. and Gómez-Campo, C. (1993) The long-term storage of seeds of seventeen crucifers at very low moisture contents. Plant Varieties and Seeds 6, 7581.Google Scholar
Francis, A. and Coolbear, P. (1987) A comparison of changes in the germination responses and phospholipid composition of naturally and artificially aged tomato seed. Annals of Botany 59, 167172.CrossRefGoogle Scholar
Haberlandt, F. (1873) Die Keimfähigkeit unserer Getrei-dekörner, ihre Dauer und die Mittel ihrer Erhaltung (The germination of our cereal seeds, their longevity and the means for their maintenance). Wiener landwirtschftliche Zeitung, p. 126.Google Scholar
Haberlandt, F. (1879) Der allgemeine landwirtschaftliche Pflanzenbau (General agricultural crop husbandry). Verlag Faesy and Frick, Wien.Google Scholar
IBPGR (1985) Cost-effective long-term seed stores. International Board for Plant Genetic Resources, Rome.Google Scholar
ISTA (1985) International rules for seed testing. Seed Science and Technology 13, 299513.Google Scholar
Justice, O.L. and Bass, L.N. (1978) Principles and practices of seed storage. USDA Agricultural Handbook No. 506. U.S. Government Printing Office, Washington, D.C.Google Scholar
Kivilaan, A. and Bandurski, R.S. (1973) The ninety-year period for Dr Beal's seed viability experiment. American Journal of Botany 60, 140145.CrossRefGoogle Scholar
Kjaer, A. (1948) Germination of buried and dry stored seeds. II. 1934–1944. Proceedings of the International Seed Testing Association 14, 1926.Google Scholar
Koch, W. (1968) Zur Lebensdauer von Unkrautsamen (On viability of weed seeds). Saatgut-Wirtschaft 20, 251253.Google Scholar
Kruse, M. and Steiner, A.M. (1994) A method to test the reliability of size grading by sieves in seed testing by using a standardised reference sample. Seed Science and Technology 22, 349359.Google Scholar
Priestley, D.A. (1986) Seed aging. Comstock Publishing Associates, Ithaca and London.Google Scholar
Roberts, E.H. (1961) Viability of cereal seed for brief and extended periods. Annals of Botany 25, 373380.CrossRefGoogle Scholar
Ruckenbauer, P. (1971) Keimfähiger Winterweizen aus dem Jahre 1877. – Beobachtungen und Versuche (Germinating winter wheat of the year 1877. – Observations and experiments). Die Bodenkultur (Wien) 22, 372386.Google Scholar
Salzmann, R. (1954) Untersuchungen über die Lebensdauer von Unkrautsamen im Boden. (Studies on the longevity of weed seeds in soil). Mitteilungen für die schweizerische Landwirtschaft 2, 170176.Google Scholar
Schulze, A., Steiner, A.M. and Ruckenbauer, P. (1994) Variability of an Austro–Hungarian landrace of barley (Hordeum vulgare L.) – Electrophoretic analysis of the hordeins of the Vienna sample of 1877. Plant Varieties and Seeds 7, 193197.Google Scholar
Toole, V.K. (1986) Ancient seeds; seed longevity. Journal of Seed Technology 10, 123.Google Scholar
Toole, E.H. and Brown, E. (1946) Final results of the Duvel buried seed experiment. Journal of Agricultural Research 72, 201210.Google Scholar