Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-30T19:32:56.208Z Has data issue: false hasContentIssue false

Characterisation of seed dormancy of 12 Chilean species of Nolana (Solanaceae) from the coastal Atacama Desert

Published online by Cambridge University Press:  22 December 2020

Josefina Hepp
Affiliation:
Departamento de Ciencias Vegetales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago, Chile Centro del Desierto de Atacama, Pontificia Universidad Católica de Chile, Santiago, Chile
Miguel Gómez
Affiliation:
Departamento de Ciencias Vegetales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago, Chile Centro del Desierto de Atacama, Pontificia Universidad Católica de Chile, Santiago, Chile
Pedro León-Lobos
Affiliation:
Centro Regional de Investigacion La Platina, Instituto de Investigaciones Agropecuarias, INIA, Santiago, Chile
Gloria Montenegro
Affiliation:
Departamento de Ciencias Vegetales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago, Chile Centro del Desierto de Atacama, Pontificia Universidad Católica de Chile, Santiago, Chile
Luis Vilalobos
Affiliation:
Laboratorio de Fisiología del Estrés en Plantas, Facultad de Ciencias Agronómicas, Universidad de Chile, Santiago, Chile
Samuel Contreras*
Affiliation:
Departamento de Ciencias Vegetales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago, Chile Centro del Desierto de Atacama, Pontificia Universidad Católica de Chile, Santiago, Chile
*
Author for Correspondence: Samuel Contreras, E-mail: [email protected]

Abstract

The genus Nolana (Solanaceae) comprises numerous species endemic to the coastal Atacama Desert of Chile and Peru of high ornamental potential and conservation value. The environments in which these species have evolved and are present today correspond to particular conditions in the midst of a hyper-arid habitat, so the study of their germination requirements and characterisation of seed dormancy becomes important in terms of conservation but also for ecological and evolutionary purposes. Different treatments were performed on mericarps of 12 species of Nolana: control (intact seeds imbibed in distilled water), scarification in funicular plug and distilled water and scarification in funicular plug and addition of GA3 (500 ppm); their permeability to water was also tested. It was determined that the species did not present physical dormancy, as had been previously reported, but rather physiological dormancy (PD). Germination results after treatments were not homogeneous among all 12 species, indicating differences in their dormancy levels. Also, the important role of the endosperm in the prevention of germination for the studied Nolana species was highlighted. Regarding the relationship between the level of PD (expressed as the percentage of germination for the most successful treatment) and the latitudinal distribution of the species or their phylogenetic closeness, it was determined that, for the studied species, their proximity in terms of clades was more relevant than their latitudinal distribution.

Type
Research Paper
Copyright
Copyright © The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barreto, LC, Santos, FMG and Garcia, QS (2016) Seed dormancy in Stachytarpheta species (Verbenaceae) from high-altitude sites in south-eastern Brazil. Flora 225, 3744.CrossRefGoogle Scholar
Baskin, JM and Baskin, CC (2004) A classification system for seed dormancy. Seed Science Research 14, 116.CrossRefGoogle Scholar
Baskin, CC and Baskin, JM (2014) Seeds: ecology, biogeography, and evolution of dormancy and germination (2nd edn). San Diego, CA, USA, Elsevier.Google Scholar
Cabrera, E, Hepp, J, Gómez, M and Contreras, S (2015) Seed dormancy of Nolana jaffuelii I.M.johnst. (Solanaceae) in the coastal Atacama desert. Flora 214, 1723.CrossRefGoogle Scholar
Carta, A, Hanson, S and Müller, JV (2016) Plant regeneration from seeds responds to phylogenetic relatedness and local adaptation in Mediterranean Romulea (Iridaceae) species. Ecology and Evolution 6, 41664178.CrossRefGoogle ScholarPubMed
Dayrell, RLC, Garcia, QS, Negreiros, D, Baskin, CC, Baskin, JM and Silveira, FAO (2016) Phylogeny strongly drives seed dormancy and quality in a climatically buffered hotspot for plant endemism. Annals of Botany 119, 267277.CrossRefGoogle Scholar
Dillon, MO, Tu, T, Soejima, A, Yi, T, Nie, Z, Tye, A and Wen, J (2007) Phylogeny of Nolana (Nolaneae, Solanoideae, Solanaceae) as inferred from granule-boundstarch synthase I (GBSSI) sequences. Taxon 56, 10001011.CrossRefGoogle Scholar
Dillon, MO, Tu, T, Xie, L, Quipuscoa Silvestre, V and Wen, J (2009) Biogeographic diversification in Nolana (Solanaceae), a ubiquitous member of the Atacama and Peruvian deserts along the western coast of South America. Journal of Systematics and Evolution 47, 457476.CrossRefGoogle Scholar
Dillon, MO (2005) Solanaceae of the lomas formations of coastal Peru and Chile, pp. 131155 in Hollowell, V; Keating, T; Lewis, W; Croat, T (Eds) A festschrift for William G. D'Arcy: the legacy of a taxonomist, Monographs in Systematic Botany from the Missouri Botanical Garden. St. Louis, Missouri.Google Scholar
Douglas, A and Freyre, R (2006) Determination of seed germination requirements in Nolana sp. HortScience 41, 1002. Oral session abstracts. 103rd annual international conference of the American Society for Horticultural Science, New Orleans, Louisiana.CrossRefGoogle Scholar
Douglas, A (2007) Sexual compatibility and seed germination in Nolana species. Master of science thesis, available at https://scholars.unh.edu/thesis/295/Google Scholar
Eberhart, A and Tielbörger, K (2012) Maternal fecundity does not affect offspring germination – an empirical test of the sibling competition hypothesis. Journal of Arid Environments 76, 2329.CrossRefGoogle Scholar
Egaña, I, Cereceda, P, Pinto, R, Larraín, H, Osses, P and Farías, M (2004) Estudio biogeográfico de la comunidad arbustiva del farellón costero de punta patache, iquique, Chile. Revista de Geografía Norte Grande 31, 99113.Google Scholar
Enciclopedia de la Flora Chilena (2014) Encyclopedia of Chilean flora, available at www.florachilena.cl.Google Scholar
Ellenberg, H (1959) Über den Wasserhaushalt tropischer Nebeloasen in der Küstenwüste Perus. Bericht über das Geobotanisches Forschungsinstitut Rubel in Zürich 1958, 4774.Google Scholar
Ellis, RH and Roberts, EH (1980) Towards a rational basis for testing seed quality, pp. 605635 in Hebblethwaite, PD (Ed) Seed production, London, Butterworth.Google Scholar
Facelli, JM, Chesson, P and Barnes, N (2005) Differences in seed biology of annual plants in arid lands: a key ingredient of the storage effect. Ecology 86, 29983006.CrossRefGoogle Scholar
Fenner, M (1985) Seed ecology. New York, NY, Chapman and Hall.CrossRefGoogle Scholar
Fick, SE and Hijmans, RJ (2017) Worldclim 2: new 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology 37, 43024315.CrossRefGoogle Scholar
Figueroa, JA, León-Lobos, P, Cavieres, LA and Pritchard, H (2004) Ecofisiología de semillas en ambientes contrastantes de Chile: Un gradiente desde ecosistemas desérticos a templado-húmedos Fisiología ecológica y evolutiva de plantas, Valparaíso, Ediciones Universidad Católica de Valparaíso, 81–98.Google Scholar
Finch-Savage, WE and Leubner-Metzger, G (2006) Seed dormancy and the control of germination. New Phytologist 171, 501523.CrossRefGoogle ScholarPubMed
Flora del Conosur (2014) Vascular plants catalog, available at http://www2.darwin.edu.ar/Proyectos/FloraArgentina/FA.asp.Google Scholar
Freyre, R, Douglas, A and Dillon, MO (2005) Artificial hybridizations in five species of Chilean Nolana (Solanaceae). HortScience 40, 532536.CrossRefGoogle Scholar
Giorni, VT, Bicalho, EM and Garcia, QS (2018) Seed germination of Xyris spp. From Brazilian campo rupestre is not associated to geographic distribution and microhabitat. Flora 238, 102109.CrossRefGoogle Scholar
Groot, SPC and Karssen, CM (1987) Gibberellins regulate seed germination in tomato by endosperm weakening: a study with gibberellin-deficient mutants. Planta 171, 525531.CrossRefGoogle ScholarPubMed
Gutterman, Y (1995) Seed dispersal, germination, and flowering strategies of desert plants. Encyclopedia of Environmental Biology 3, 295316.Google Scholar
Gutterman, Y (2002) Survival strategies of annual desert plants. Berlin/Heidelberg, Springer-Verlag.CrossRefGoogle Scholar
Hepp, J (2019) Characterization of seed dormancy of Nolana (Solanaceae) in the coastal Atacama desert of Chile. Doctoral thesis, available at https://repositorio.uc.cl/handle/11534/26359Google Scholar
Johnston, IM (1936) A study of the Nolanaceae. Proceedings of the American Academy of Arts and Sciences 71, 8587.CrossRefGoogle Scholar
Jurado, E and Flores, J (2005) Is seed dormancy under environmental control or bound to plant traits? Journal of Vegetation Science 16, 559564.CrossRefGoogle Scholar
Knapp, S (2002) Tobacco to tomatoes: a phylogenetic perspective on fruit diversity in the Solanaceae. Journal of Experimental Botany 53, 20012022.CrossRefGoogle ScholarPubMed
León-Lobos, P, Way, M, Pritchad, H, Moreira-Muñoz, A, León, M and Casado, F (2003) Conservación ex situ de la flora de Chile en banco de semillas. Chloris Chilensis, Año 6, N° 1. http://www.chlorischile.cl.Google Scholar
León-Lobos, P, Way, M, Aranda, PD and Lima-Junior, M (2012) The role of ex situ seed banks in the conservation of plant diversity and in ecological restoration in Latin America. Plant Ecology & Diversity 5, 245258.CrossRefGoogle Scholar
León-Lobos, P, Bustamante-Sánchez, MA, Nelson, CR, Alarcon, D, Hasbún, R, Way, M, Pritchard, HW and Armesto, JJ (2020) Lack of adequate seed supply is a major bottleneck for effective ecosystem restoration in Chile: friendly amendment to Bannister et al. (2018). Restoration Ecology 28, 277281.CrossRefGoogle Scholar
Mesa, A (1981) Monographie des Nolanacées. Thése présentée devant L´Université de Rennes I pour obtener le Titre de Doctoeur.Google Scholar
Meyer, SE, Kitchen, SG and Carlson, SL (1995) Seed germination timing patterns in intermountain penstemon (Scrophulariaceae). American Journal of Botany 82, 377389.CrossRefGoogle Scholar
Muñoz-Schick, M, Pinto, R, Mesa, A and Moreira-Muñoz, A (2001) “Oasis de neblina” en los cerros costeros del sur de iquique, región de tarapacá, Chile, durante el evento El niño 1997-1998. Revista Chilena de Historia Natural 74, 389405.CrossRefGoogle Scholar
Orellana, H, García, JL, Ramírez, C and Zanetta, N (2017) El aluvión del 9 de agosto 2015 en alto patache, región de tarapacá, desierto de Atacama. Revista de Geografía Norte Grande 68, 6589.CrossRefGoogle Scholar
Pinto, R and Luebert, F (2009) Datos sobre la flora vascular del desierto costero de arica y tarapacá, Chile, y sus relaciones fitogeográficas con el sur de perú. Gayana Botánica 66, 2849.CrossRefGoogle Scholar
Pinto, R, Larraín, H, Cereceda, P, Lázaro, P, Osses, P and Schemenauer, RS (2001) Monitoring fog-vegetation communities at a fog-site in alto patache, south of iquique, northern Chile, during “El niño” and “La niña” events (1997-2000). 2nd international conference on Fog and Fog collection, Newfoundland, Canadá, St. John´s, 293–296Google Scholar
Pliscoff, P, Zanetta, N, Hepp, J and Machuca, J (2017) Efectos sobre la flora y vegetación del evento de precipitación extremo de agosto 2015 en alto patache, desierto de Atacama, Chile. Revista de Geografía Norte Grande 68, 91103.CrossRefGoogle Scholar
Riedemann, P, Aldunate, G and Teillier, S (2006) Flora nativa de valor ornamental: zona norte. Santiago, Chile, Ediciones Chagual.Google Scholar
Rundel, PW, Dillon, MO, Palma, B, Mooney, HA, Gulmon, SL and Ehleringer, JR (1991) The phytogeography and ecology of the coastal Atacama and Peruvian deserts. Aliso 13, 149.CrossRefGoogle Scholar
Rundel, PW, Palma, B, Dillon, MO, Sharifi, MR and Boonpragob, K (1997) Tillandsia landbeckii in the coastal Atacama desert of northern Chile. Revista Chilena de Historia Natural 70, 341349.Google Scholar
Sánchez, RA, Sunell, L, Labavitch, JM and Bonner, BA (1990) Changes in the endosperm cell walls of two Datura species before radicle protrusion. Plant Physiology 93, 8997.CrossRefGoogle ScholarPubMed
Santibañez, F, Santibañez, P, Caroca, Cy and González, P (2017) Atlas Agroclimático de Chile – Tomo I: Regiones de Arica y Parinacota, Tarapacá y Antofagasta. Centro AGRIMED, Facultad de Ciencias Agronómicas, Universidad de Chile, Santiago de Chile.Google Scholar
Saunders, E (1936) On certain unique features of the gynoecium in Nolanaceae. New Phytologist 35, 423431.CrossRefGoogle Scholar
Schulz, N, Aceituno, P and Richter, M (2011) Phytogeographic divisions, climate change and plant dieback along the coastal desert of northern Chile. Erdkunde 65, 169187.CrossRefGoogle Scholar
Tago-Nakazawa, M and Dillon, MO (1999) Biogeografia y evolución en el clado Nolana (Nolaneae – Solanaceae). Arnaldoa 6, 81116.Google Scholar
Tu, T, Dillon, MO, Sun, H and Wen, J (2008) Phylogeny of Nolana (Solanaceae) of the Atacama and Peruvian deserts inferred from sequences of four plastid markers and the nuclear LEAFY second intron. Molecular Phylogenetics and Evolution 49, 561573.CrossRefGoogle ScholarPubMed
Van Assche, J, Van Nerum, D and Darius, P (2002) The comparative germination ecology of nine Rumex species. Plant Ecology 159, 131142.CrossRefGoogle Scholar
Venable, L (2007) Bet hedging in a guild of desert annuals. Ecology 88, 10861090.CrossRefGoogle Scholar