Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-23T18:53:33.861Z Has data issue: false hasContentIssue false

Euclid’s Fourth Postulate: Its authenticity and significance for the foundations of Greek mathematics

Published online by Cambridge University Press:  07 December 2023

Vincenzo De Risi*
Affiliation:
Laboratoire SPHère, CNRS, Paris; Max-Planck-Institut für Wissenschaftsgeschichte, Berlin

Argument

The Fourth Postulate of Euclid’s Elements states that all right angles are equal. This principle has always been considered problematic in the deductive economy of the treatise, and even the ancient interpreters were confused about its mathematical role and its epistemological status. The present essay reconsiders the ancient testimonies on the Fourth Postulate, showing that there is no certain evidence for its authenticity, nor for its spuriousness. The paper also considers modern mathematical interpretations of this postulate, pointing out various anachronisms. It further discusses the validity of the ancient proof by superposition of the Fourth Postulate. Finally, the article proposes an interpretation of the history of the concept of angle in Greek geometry between Euclid and Apollonius, and puts forward a conjecture on the interpolation of the Fourth Postulate in the Hellenistic age. The essay contributes to a general reassessment of the axiomatic foundations of ancient mathematics.

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acerbi, Fabio. 2010. “Two Approaches to Foundations in Greek Mathematics: Apollonius and Geminus.” Science in Context 23: 151–86.CrossRefGoogle Scholar
Acerbi, Fabio and Vitrac, Bernard (eds.). 2014. Héron d’Alexandrie. Metrica. Pisa: Serra.Google Scholar
Angeli, Anna and Dorandi, Tiziano. 1987. “Il pensiero matematico di Demetrio Lacone.” Cronache Ercolanesi 17: 89103.Google Scholar
Aquinas, Thomas. 1989. Sancti Thomae de Aquino Opera omnia iussu Leonis XIII P. M. edita. Vol. I, 2: Expositio libri Posteriorum, Editio altera retractata. Roma/Paris: Commissio Leonina/Vrin.Google Scholar
Arnzen, Rüdiger. 2002. Abu l-‘Abbas an-Nayrizis Exzerpte aus (Ps.-?) Simplicius’ Kommentar zu den definitionen, Postulaten und Axiomen in Euclids Elementa I. KölnGoogle Scholar
Becker, Oskar. 1955. “Die Archai in der grieschichen Mathematik. Einige ergänzende Bemerkungen zum Aufsatz von K. von Fritz.” Archiv für Begrifsgeschichte 1: 210226.Google Scholar
Beeson, Michael, Narboux, Julien, and Wiedijk, Freek. 2019. “Proof-checking Euclid.” Annals of Mathematics and Artificial Intelligence 85: 213257.Google Scholar
Lennart, Berggren, J. and van Brummelen, Glen. 2005. “Al-Kūhī’s Revision of Book I of Euclid’s Elements.” Historia Mathematica 32: 426–52.Google Scholar
Besthorn, Rasmus Olsen and Ludvig Heiberg, Johan. 1893–1932. Codex Leidensis 399,1: Euclidis elementa ex interpretatione Al-Hadschdschadschii cum commentariis Al-Nairizii. Copenhagen: Gyldendel.Google Scholar
Birkhoff, George David. 1932. “A Set of Postulates for Plane Geometry, Based on Scale and Protractor.” Annals of Mathematics 33: 329345.CrossRefGoogle Scholar
Blåsjö, Viktor. 2022. “Operationalism: An Interpretation of the Philosophy of Ancient Greek Geometry.” Foundations of Science 27: 587708.Google Scholar
Borelli, Giovanni Alfonso. 1658. Euclides restitutus, sive prisca geometriae elementa. Pisa: F. Onofrio.Google Scholar
Borsuk, Karol and Szmielew, Wanda. 1960. Foundations of Geometry. Amsterdam: North Holland.Google Scholar
Brentjes, Sonja. 1997–1998. “Additions to Book I in the Arabic Traditions of Euclid’s Elements.” Studies in History of Medicine and Science 15: 55117.Google Scholar
Brentjes, Sonja. 2018. “Who Translated Euclid’s Elements into Arabic?” In Translation and Transmission, edited by Hämeen-Anttila, J. and Lindstedt, I., 2154. Münster: Ugarit.Google Scholar
Brentjes, Sonja. 2020. “Wilbur R. Knorr and Thābit ibn Qurra.” Aestimatio 1: 113–72.Google Scholar
Busard, Hubert L.L. 1967. “The Translation of the Elements of Euclid from the Arabic into Latin by Hermann of Carinthia (?).” Janus 54: 1140.Google Scholar
Busard, Hubert L.L. 1977. The Translation of Euclid’s Elements from the Arabic into Latin by Hermann of Carinthia (?). Books VII-XII. Amsterdam: Mathematisch Centrum.Google Scholar
Busard, Hubert L.L. 1983. The First Latin Translation of Euclid’s Elements commonly ascribed to Adelard of Bath. Toronto: Pontifical Institute of Mediaeval Studies.Google Scholar
Busard, Hubert L.L. 1984. The Latin Translation of the Arabic Version of Euclid’s Elements commonly ascribed to Gerard of Cremona. Leiden: Brill.Google Scholar
Busard, Hubert L.L. 1996. A Thirteenth-Century Adaptation of Robert of Chester’s Version of Euclid’s Elements. München: Institut für Geschichte der Naturwissenschaften.Google Scholar
Busard, Hubert L.L. 2001. Johannes de Tinemue’s Redaction of Euclid’s Elements, the so-called Adelard III Version. Stuttgart: Steiner.Google Scholar
Busard, Hubert L.L. 2005. Campanus of Novara and Euclid’s Elements. Stuttgart: Steiner.Google Scholar
Busard, Hubert L.L. and Folkerts, Menso. 1992. Robert of Chester’s (?) Redaction of Euclid’s Elements, the so-called Adelard II Version. Basel: Birkhäuser.Google Scholar
Chemla, Karine. 1999. “Commentaires, éditions et autres textes seconds : Quel enjeu pour l’histoire des mathématiques ? Reflexions inspirées par la note de Reviel Netz.” Revue d’histoire des mathématiques 5: 127–48.Google Scholar
Clavius, Christoph. 1574. Euclidis elementorum libri XV. Roma: Accolto.Google Scholar
Clebsch, Alfred. 1891. Vorlesungen über Geometrie, ed. Lindemann, F.. Leipzig: Teubner.Google Scholar
Clifford, William Kingdon. 1901 [first ed. 1879]. Lectures and Essays, edited by Stephen, L. and Pollock, F.. London: Macmillan.Google Scholar
Curtze, Moritz. 1899. Anaritii in decem libros priores elementorum Euclidis commentarii ex interpretatione Gherardi Cremonensis. Leipzig: Teubner.Google Scholar
De Risi, Vincenzo. 2014. G. Saccheri. Euclid Vindicated from Every Blemish. Basel/Boston: Birkhäuser.Google Scholar
De Risi, Vincenzo (ed.). 2015. Mathematizing Space. The Objects of Geometry from Antiquity to the Early Modern Age. Basel/Boston: Birkhäuser.Google Scholar
De Risi, Vincenzo. 2016. “The Development of Euclidean Axiomatics. The Systems of Principles and the Foundations of Mathematics in Editions of the Elements from Antiquity to the Eighteenth Century.” Archive for History of Exact Sciences 70: 591676.Google Scholar
De Risi, Vincenzo. 2021a. “Gapless Lines and Gapless Proofs. Intersections and Continuity in Euclid’s Elements.” Apeiron 54: 233–59.CrossRefGoogle Scholar
De Risi, Vincenzo. 2021b. “Euclid’s Common Notions and the Theory of Equivalence.” Foundations of Science 26: 301–24.Google Scholar
De Risi, Vincenzo. 2022. “Euclid Upturned. Borelli on the Foundations of Geometry.” Physis: International Journal for the History of Science 57: 301–30.Google Scholar
Djebbar, Ahmed. 2003. “Quelques exemples de scholies dans la tradition arabe des “Éléments” d’Euclide.” Revue d’histoire des sciences 56: 293321.CrossRefGoogle Scholar
Dodgson, Charles Lutwidge. 1879. Euclid and his Modern Rivals. London: MacMillan.Google Scholar
Einarson, Benedict. 1936. “On Certain Mathematical Terms in Aristotle’s Logic.” The American Journal of Philology 57: 3354.Google Scholar
Ferreirós, José. 2016. Mathematical Knowledge and the Interplay of Practices. Princeton: Princeton University Press.CrossRefGoogle Scholar
Frajese, Attilio. 1967. “Il cerchio nella geometria di Enopide di Chio.” Archimede 6: 285–94.Google Scholar
Gardies, Jean-Louis. 1997. L’organisation des mathématiques greques de Théétète à Archimède. Paris: Vrin 1997.Google Scholar
Gerbert of Aurillac. 1880. Silvestri II pontificis romani … Opera Omnia [Patrologia Latina 139]. Paris: Garnier.Google Scholar
Giordano, Vitale. 1680. Euclide Restituto, ovvero gli antichi elementi geometrici ristaurati e facilitati. Roma: Angelo Bernabò.Google Scholar
Hallett, Michael and Majer, Ulrich. 2004. David Hilbert’s Lectures on the Foundations of Geometry, 1891–1902. Berlin: Springer.Google Scholar
Hartshorne, Robin. 2000. Geometry: Euclid and Beyond. New York: Springer.Google Scholar
Heath, Thomas Little. 1925 [first ed. 1908]. Euclid: The Thirteen Books of the Elements. Cambridge: Cambridge University Press.Google Scholar
Heath, Thomas Little. 1949. Mathematics in Aristotle. Oxford: Oxford University Press.Google Scholar
Heiberg, Johan Ludvig and Menge, Heinrich. 1883–1899. Euclidis opera omnia. Leipzig: Teubner.Google Scholar
Henderson, David and Taimina, Daina. 2005. Experiencing Geometry: Euclidean and non-Euclidean with History. Upper Saddle River: Prentice Hall.Google Scholar
Herigone, Pierre. 1634. Cursus mathematicus. Paris: Le Gras.Google Scholar
Hilbert, David. 1968 [first ed. 1899; fourth ed. 1913]. Grundlagen der Geometrie. Leipzig: Teubner.Google Scholar
Hooper Sude, Barbara. 1974. Ibn Al-Haytham’s Commentary on the Premises of Euclid’s Elements. Books I-VI. Princeton University (PhD dissertation).Google Scholar
Jones, Alexander. 1994. “Peripatetic and Euclidean Theories of the Visual Ray.” Physis 31: 4576.Google Scholar
Kheirandish, Elaheh. 1999. The Arabic Version of Euclid’s Optics. New York: Springer.Google Scholar
Klein, Felix. 1925 [first ed. 1908]. Elementarmathematik vom höheren Standpunkte aus. Berlin: Springer.Google Scholar
Knorr, Wilbur R. 1978. “Archimedes and the pre-Euclidean Proportion Theory.” Archives internationales d’histoire des sciences 28: 183244.Google Scholar
Knorr, Wilbur R. 1981. “On the Early History of Axiomatics: The Interaction of Mathematics and Philosophy in Greek Antiquity.” In Theory Change, Ancient Axiomatics, and Galileo’s Methodology, edited by Hintikka, Jaakko, Gruender, David, Agazzi, Evandro, 145–86. Dordrecht: Reidel.Google Scholar
Knorr, Wilbur R. 1994. “Pseudo-Euclidean Reflections in Ancient Optics.” Physis 31: 145.Google Scholar
Legendre, Adrien-Marie. 1794. Éléments de géométrie avec des notes. Paris: Didot.Google Scholar
Lo Bello, Anthony. 2003. The Commentary of Albertus Magnus on Book I of Euclid’s Elements of Geometry. Leiden: Brill.Google Scholar
Lo Bello, Anthony. 2009. The Commentary of Al-Nayrizi on Books II–IV of Euclid’s Elements of Geometry. Leiden: Brill.Google Scholar
Manders, Kenneth. 2008. “The Euclidean Diagram.” In The Philosophy of Mathematical Practice, edited by Mancosu, Paolo, 80133. Oxford: Oxford University Press.Google Scholar
Mendell, Henry. 2007. “Two Traces of Two-Step Eudoxan Proportion Theory in Aristotle: a Tale of Definitions in Aristotle, with a Moral.” Archive for History of Exact Sciences 61: 337.CrossRefGoogle Scholar
Mercator, Nicolaus. 1678. Euclidis Elementa Geometrica Novo Ordine ac Methodo fere demonstrata. London: Martyn.Google Scholar
Mueller, Ian. 1981. Philosophy of Mathematics and Deductive Structure in Euclid’s Elements. New York: Dover.Google Scholar
Mugler, Charles. 1958. Dictionnaire historique de la terminologie géométrique des Grecs. Paris: Klincksieck.Google Scholar
Netz, Reviel. 1998. “Deuteronomic Texts: Late Antiquity and the History of Mathematics.” Revue d’histoire des mathématiques 4: 261–88.Google Scholar
Netz, Reviel. 1999. The Shaping of Deduction in Greek Mathematics: A Study in Cognitive History. Cambridge: Cambridge University Press.Google Scholar
Netz, Reviel. 2005. “A Programmatic Note: On Two Types of Intertextuality.” Revue d’histoire des mathématiques 11: 143–55.Google Scholar
Netz, Reviel. 2015. “Were There Epicurean Mathematicians?Oxford Studies in Ancient Philosophy 49: 283319.Google Scholar
Panza, Marco. 2012. “The Twofold Role of Diagrams in Euclid’s Plane Geometry.” Synthese 186: 55102.Google Scholar
Peletier, Jacques. 1557. In Euclidis Elementa Geometrica Demonstrationum Libri sex. Lyon: Tornes.Google Scholar
Rashed, Roshdi. 1997. Oeuvres philosophiques et scientifiques d’al-Kindî. L’Optique et la Catoptrique. Leiden: Brill.Google Scholar
Rashed, Roshdi. 2008–2010. Apollonius de Perge. Coniques. Berlin: de Gruyter.Google Scholar
Rashed, Roshdi. 2015. Angles et grandeur : D’Euclide à Kamāl al-Dīn al-Fārisī. Berlin: de Gruyter.Google Scholar
Rashed, Roshdi and Crozet, Pascal. 2023. Géométrie et philosophie des mathématiques au Xe siècle. Oeuvre mathématique d’al-Sijzī. Vol. 2. Berlin: DeGruyter.Google Scholar
Ratcliffe, John G. 2006 [first ed. 1994]. Foundations of Hyperbolic Manifolds. New York: Springer.Google Scholar
Richard, Claude. 1645. Euclidis elementorum geometricorum libros tredecim. Antwerp: Verdus.Google Scholar
Saccheri, Gerolamo. 1733. Euclides ab omni naevo vindicatus. Milano: Montani.Google Scholar
Saito, Ken. 2003. “Phantom Theories of pre-Eudoxean Proportion.” Science in Context 16: 331347.Google Scholar
Saito, Ken. 2006. “A Preliminary Study in the Critical Assessment of Diagrams in Greek Mathematical Works.” SCIAMVS 7: 81144.Google Scholar
Schwabhäuser, Wolfram, Szmielew, Wanda and Alfred, Tarski. 1983. Metamathematische Methoden in der Geometrie. Berlin: Springer.Google Scholar
Seidenberg, Abraham. 1975. “Did Euclid’s Elements, Book I, Develop Geometry Axiomatically?Archive for History of Exact Sciences 14: 263–95.Google Scholar
Sezgin, Fuat. 1974. Geschichte des Arabischen Schriftums, vol. 5. Leiden: Brill.Google Scholar
Sidoli, Nathan. 2018a. “The Concept of Given in Greek Mathematics.” Archive for History of Exact Sciences 72: 353402.Google Scholar
Sidoli, Nathan. 2018b. “Uses of Construction in Problems and Theorems in Euclid’s Elements I–VI.” Archive for History of Exact Sciences 72: 403452.Google Scholar
Simpson, Thomas. 1747. Elements of Plane Geometry. London: Farrer & Turner.Google Scholar
Szabó, Árpad. 1969. Anfängen der grieschischen Mathematik. Wien: Oldenbourg.Google Scholar
Tanaka, Noboru. 1959. “Conformal Connections and Conformal Transformations.” Transactions of the American Mathematical Society 92: 168–90.Google Scholar
Tannery, Paul. 1881. “Quelques fragments d’Apollonius de Perge.” Bulletin des sciences mathématiques et astronomiques 5: 124–13.Google Scholar
Tannery, Paul. 1884. “Sur l’authenticité des axiomes d’Euclide.” Bulletin des sciences mathématiques et astronomiques 8: 162175.Google Scholar
Tartaglia, Nicolò. 1543. Euclide Megarense philosopho, solo introduttore delle scientie mathematice. Venezia: Rossinelli.Google Scholar
Thurston, William. 1997. Three-Dimensional Geometry and Topology. Princeton: PUP.CrossRefGoogle Scholar
Tummers, Paul M.J.E. 1984. Albertus (Magnus)’ Commentaar op Euclides’ Elementen der Geometrie. Nijmegen: Ingenium.Google Scholar
Tummers, Paul M.J.E. 1994. The Latin Translation of Anaritius’ Commentary on Euclid’s Elements of Geometry, Books I–IV. Nijmegen: Ingenium.Google Scholar
Turner, Eric G., Fowler, David H.F., Koenen, Ludwig, and Youtie, Louise C. 1985. “Euclid, Elements I, Definitions 1–10 (P. Mich. iii, 143).” Yale Classical Studies 27: 1324.Google Scholar
Unguru, Sabetai. 1975. “On the Need to Rewrite the History of Greek Mathematics.” Archive for History of Exact Sciences 15: 67114.Google Scholar
Väisälä, Kalle. 1935. “Über die Kongruenzaxiome der Geometrie.Annales Academiae Scientiarum Fennicae A 44: 112.Google Scholar
van der Waerden, Bartel Leendert. 1977–1978. “Die Postulate und Konstruktionen in der frühgriechischen Geometrie.” Archive for History of Exact Sciences 18: 343357.Google Scholar
Verde, Francesco. 2013. Elachista. La dottrina dei minimi nell’Epicureismo. Leuven: LUP.Google Scholar
Vitrac, Bernard. 1990–2001. Euclide. Les Éléments. Paris: PUF.Google Scholar
Vitrac, Bernard. 1998. “L’angle corniculaire dans la tradition grecque des Éléments d’Euclide.” Unpublished but available online in HAL–Archives Ouvertes.Google Scholar
Vitrac, Bernard and Djebbar, Ahmed. 2011–2012. “Le livre XIV des Éléments d’Euclide : versions greques et arabes.” SCIAMVS 12: 29158 and 13: 3–156.Google Scholar
Vlastos, Gregory. 1965. “Minimal Parts in Epicurean Atomism.” Isis 56: 121–47.Google Scholar
von Fritz, Kurt. 1959. “Gleichheit, Kongruenz und Ähnlichkeit in der antiken Mathematik bis auf Euklid.” Archiv für Begriffsgeschichte 4: 781.Google Scholar
Wehrli, Fritz. 1955. Die Schule des Aristoteles. Basel: Schwabe.Google Scholar
Zeuthen, Hieronymus Georg. 1896. Geschichte der Mathematik in Altertum und Mittelalter. Kopenhagen: Höst.Google Scholar