Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-28T12:14:17.820Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  16 October 2008

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Books Received
Copyright
Copyright © The Royal Institute of Philosophy and the contributors 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Kant, I. (1766) Träume eines Geistersehers, erläutert durch Träume der Metaphysik. In Kants gesammelte Schriften (Berlin: de Gruyter); Ak 2: 315–73. English translation (1992) ‘Dreams of a spirit-seer elucidate10/9/2008 9:40AMd by dreams of metaphysics’, in Walford, D. and Meerbote, R. (eds.) Theoretical Philosophy 1755–1770, The Cambridge Edition of the Works of Immanuel Kant (Cambridge: Cambridge University Press), 301360.Google Scholar
Kant, I. (1781/1787) Kritik der reinen Vernunft (Riga: Johann Hartknoch). In Kants gesammelte Schriften (Berlin: de Gruyter); Ak 4: 1–252; 2nd edition Ak 3: 1–552. English translation (1997) Critique of Pure Reason, by Guyer, P. and Wood, A. W., The Cambridge Edition of the Works of Immanuel Kant (Cambridge: Cambridge University Press).Google Scholar
Kant, I. (1786) Metaphysische Anfangsgründe der Naturwissenschaft (Riga: Johann Hartknoch). In Kants gesammelte Schriften (Berlin: de Gruyter); Ak 4: 465–565. English translation (2004) Metaphysical Foundations of Natural Science, by Friedman, M. (Cambridge: Cambridge University Press).Google Scholar
Kant, I. (1790) Kritik der Urteilskraft (Berlin: Lagarde). In Kants gesammelte Schriften (Berlin: de Gruyter); Ak 5:165–485. English translation (2000) Critique of the Power of Judgment, by Guyer, P. and Matthews, E., The Cambridge Edition of the Works of Immanuel Kant (Cambridge: Cambridge University Press).Google Scholar
Kant, I. (1793/1804) Welches sind die wirklichen Fortschritte, die die Metaphysik seit Leibnitzens und Wolf's Zeiten in Deutschland gemacht hat?. In Kants gesammelte Schriften (Berlin: de Gruyter); Ak 20: 259–351. English translation (2002) ‘What Real Progress Has Metaphysics Made in Germany since the Time of Leibniz and Wolff?’, in Allison, H. and Heath, P. (eds.) Theoretical Philosophy after 1781, The Cambridge Edition of the Works of Immanuel Kant (Cambridge: Cambridge University Press), 337424.Google Scholar
Kant, I. (1936, 1938) Opus postumum. In Kants gesammelte Schriften (Berlin: de Gruyter); Ak 21, 22. English translation (1993) Opus postumum, by Förster, E. and Rosen, M., The Cambridge Edition of the Works of Immanuel Kant (Cambridge: Cambridge University Press).Google Scholar
Adelung, J. C. (1793) Grammatisch-kritisches Wörterbuch der Hochdeutschen Mundart, (Leipzig: Breitkopf).Google Scholar
Alexander, H. G. (ed.) (1956) The Leibniz–Clarke Correspondence, (Manchester: Manchester University Press).Google Scholar
Allison, H. E. (2004) Kant's Transcendental Idealism: An Interpretation and Defense, revised edition, (New Haven and London: Yale University Press).CrossRefGoogle Scholar
Anderson, P. (1972) ‘More is Different’, Science 177, 393–96.CrossRefGoogle Scholar
Bangu, S. (2008) ‘Reifying mathematics? Prediction and symmetry classification’, Studies in History and Philosophy of Modern Physics 39, 239258.CrossRefGoogle Scholar
Beck, L. W. (1968) ‘The Kantianism of Lewis’, in Schilpp (1968), 271285.Google Scholar
Bergson, H. (1907) L'évolution créatrice, (Paris: F. Alcan). English translation (1911) Creative Evolution, by Mitchell, A. (London: Macmillan).Google Scholar
Bertoloni Meli, D. (in press) ‘The axiomatic tradition in 17th century mechanics’, in Domski, M. and Dickson, M. (eds.) Discourse on a new method: reinvigorating the marriage of history and philosophy of science (Open Court).Google Scholar
Bogen, J. and Woodward, J. (1988) ‘Saving the Phenomena’, Philosophical Review 97, 303352.CrossRefGoogle Scholar
Brading, K. and Castellani, E. (eds.) (2003) Symmetries in Physics, (Cambridge: Cambridge University Press).CrossRefGoogle Scholar
Brading, K. and Brown, H. (2003) ‘Symmetries and Noether's Theorems’, in Brading, K. and Castellani, E. (eds.) Symmetries in Physics: Philosophical Reflections, (Cambridge: Cambridge University Press).CrossRefGoogle Scholar
Brading, K. and Ryckman, T. (2008) ‘Hilbert's “Foundations of Physics”: Gravitation and Electromagnetism within the Axiomatic Method’, Studies in History and Philosophy of Modern Physics 39, 102153.CrossRefGoogle Scholar
Brouwer, L. E. J. (1907) Over de Grondslagen der Wiskunde, Dissertation, University of Amsterdam.Google Scholar
Brouwer, L. E. J. (1925) ‘Zur Intuitionistiche Zerlegung mathematischer Grundbegriffe’, Jahresbericht deutsch. Math. Ver., 33, 251–256. Reprinted in Heyting, A. (ed.) (1975) Collected Works, vol. I, (Amsterdam: North-Holland), 295297.Google Scholar
Brouwer, L. E. J. (1928) ‘Intuitionistische Betrachtungen über den Formalissmus’, Proc. Akad. Amsterdam 31, 374–9.Google Scholar
Buchdahl, G. (1992) Kant and the Dynamics of Reason, (London: Blackwell Publishing).Google Scholar
Carlson, T. (1997) ‘James and the Kantian Tradition’, in Putnam, R. A. (ed.) The Cambridge Companion to William James, (Cambridge: Cambridge University Press), 363383.CrossRefGoogle Scholar
Carrier, M. (2001) ‘Kant's Mechanical Determination of Matter in the Metaphysical Foundations of Natural Science’, in Watkins, E. (ed.) Kant and the Sciences, (Oxford: Oxford University Press), 117135.CrossRefGoogle Scholar
Caygill, H. (2005) ‘The force of Kant's Opus postumum. Kepler and Newton in the XIth fascicle’, Angelaki 10, 3342.CrossRefGoogle Scholar
Chang, H. (2001) ‘How to Take Realism Beyond Foot-Stamping’, Philosophy 76, 530.CrossRefGoogle Scholar
Chang, H. (in press) ‘Ontological Principles and the Intelligibility of Epistemic Activities’, in de Regt, H., Leonelli, S. and Eigner, K. (eds.) Philosophical Perspectives on Scientific Understanding, (Pittsburgh: University of Pittsburgh Press).Google Scholar
Corry, L., Renn, J. and Stachel, J. (1997) ‘Belated Decision in the Hilbert–Einstein Priority Dispute’, Science 278, 1270–3.CrossRefGoogle Scholar
Debs, T. and Redhead, M. (2007) Objectivity, Invariance and Convention: Symmetry in Physical Science, (Cambridge, MA: Harvard University Press).Google Scholar
De Regt, H. and Dieks, D. (2005) ‘A Contextual Approach to Scientific Understanding’, Synthese 144, 137170.CrossRefGoogle Scholar
DiSalle, R. (1988) Space, Time, and Inertia in the Foundations of Newtonian Physics, Doctoral Dissertation: University of Chicago.Google Scholar
DiSalle, R. (1991) ‘Conventionalism and the Origins of the Inertial Frame Concept’, Philosophy of Science Association 1990, vol. 2, 139147.Google Scholar
DiSalle, R. (2002) ‘Reconsidering Ernst Mach on Space, Time, and Motion’, in Malament, D. (ed.) Reading Natural Philosophy: Essays in the History and Philosophy of Science and Mathematics, (Chicago: Open Court), 167191.Google Scholar
DiSalle, R. (2006) Understanding Space-Time: The Philosophical Development of Physics from Newton to Einstein, (Cambridge: Cambridge University Press).CrossRefGoogle Scholar
Doxiadis, A. (2000) Uncle Patros and Goldbach's Conjecture, (Faber and Faber).Google Scholar
Duhem, P. (1906) La Théorie Physique: Son Object, Sa Structure (Paris: Marcel Rivière). English translation (1962) The Aim and Structure of Physical Theory, by Wiener, P. P., (New York: Atheneum).Google Scholar
Duhem, P. (1908) ‘ΣΩZEIN TA ΦAINOMENA: Essay sur la notion de théorie physique de Platon à Galilée’, Annales de philosophie chrétienne 79/156, 113–38. English translation (1969) To Save the Phenomena. An essay on the idea of physical theory from Plato to Galileo, (Chicago: University of Chicago Press).Google Scholar
Dummett, M. (1977) Elements of Intuitionism, (Oxford: Clarendon Press).Google Scholar
Dummett, M. (1978) Truth and Other Enigmas, (Cambridge, MA: Harvard University Press).Google Scholar
Dummett, M. (1991) The Logical Basis of Metaphysics, (Cambridge, MA: Harvard University Press).Google Scholar
Dupré, J. (1993) The Disorder of Things, (Cambridge, MA: Harvard University Press).Google Scholar
Earman, J. et al. (eds.) (1993) Philosophical Problems of the Internal and External World: Essays on the Philosophy of Adolf Grünbaum, (Pittsburgh: University of Pittsburgh Press).CrossRefGoogle Scholar
Eberhard, J. A. (1819) Versuch einer allgemeinen deutschen Synonymik in einem kritisch-philosophischen Wörterbuche der sinnverwandten Wörter der hochdeutschen Mundart, (Halle und Leipzig: Ruffschen Buchhandlung).Google Scholar
Einstein, A. (1905) ‘Zur Elektrodynamik bewegter Körper’, Annalen der Physik 17, 891921. English translation (1923) ‘On the Electrodynamics of Moving Bodies’, in Lorentz, H. A. ( et al. ) The Principle of Relativity: A Collection of Original Memoirs on the Special and General Theories of Relativity, (London: Methuen).Google Scholar
Einstein, A. (1921) Geometrie und Erfahrung. Erweiterte Fassung des Festvortrages gehalten an der Preussischen Akademie der Wissenschaft zu Berlin am 27. Januar 1921, (Berlin: Springer). English translation (1923) ‘Geometry and Experience’, in Jeffrey, G. and Perrett, W. (eds.) Sidelights on Relativity, (London: Methuen).Google Scholar
Einstein, A. (1925) ‘Nichteuklidische Geometrie und Physik’, Die neue Rundschau 36, 1620.Google Scholar
Einstein, A. (1979) Mein Weltbild, (Frankfurt a.M.: Ullstein).Google Scholar
Euler, L. (1755) Remarques sur les mémoires précédens de M. Bernoulli, in Stüssi, F. and Favre, H. (eds.) (1947) Opera Omnia, Series secunda, vol. 10 (Birkhäuser).Google Scholar
Falkenburg, B. (1988) ‘The Unifying Role of Symmetry Principles in Particle Physics’ Ratio 1, 113134.CrossRefGoogle Scholar
Feyerabend, P. (1975) Against Method: Outline of an Anarchist Theory of Knowledge, (London: New Left Books).Google Scholar
Folina, J. (1992) Poincaré and the Philosophy of Mathematics, (New York: Macmillan).CrossRefGoogle Scholar
Förster, E. (2000) Kant's Final Synthesis. An essay on the Opus postumum, (Cambridge, MA.: Harvard University Press).Google Scholar
Frank, P. (1949) Modern Science and Its Philosophy, (Cambridge, MA.: Harvard University Press).Google Scholar
Frege, G. (1884) Die Grundlagen der Arithmetik, (Breslau: Wilhelm Koebner). English translation (1950) The Foundations of Arithmetic, by Austin, J. L. (Evanston, IL.: Northwestern University Press).Google Scholar
Friedman, M. (1991) ‘Regulative and constitutive’, The Southern Journal of Philosophy 30, Suppl., 73102.CrossRefGoogle Scholar
Friedman, M. (1992a) Kant and the Exact Sciences, (Cambridge, MA.: Harvard University Press).Google Scholar
Friedman, M. (1992b) ‘Causal laws and the foundations of natural science’, in Guyer, P. (ed.) The Cambridge Companion to Kant, (Cambridge: Cambridge University Press), 161–99.CrossRefGoogle Scholar
Friedman, M. (1997) ‘Helmholtz's Zeichentheorie and Schlick's Allgemeine Erkenntnislehre: Early Logical Empiricism and its Nineteenth-Century Background’, Philosophical Topics 25, 1950.CrossRefGoogle Scholar
Friedman, M. (1999) Reconsidering Logical Positivism, (Cambridge: Cambridge University Press).CrossRefGoogle Scholar
Friedman, M. (2000) ‘Geometry, Construction, and Intuition in Kant and his Successors’, in Scher, G. and Tieszen, R. (eds.) Between Logic and Intuition: Essays in Honor of Charles Parsons, (Cambridge: Cambridge University Press).Google Scholar
Friedman, M. (2001a) Dynamics of Reason. The 1999 Kant Lectures at Stanford University, (Stanford: CSLI Publications).Google Scholar
Friedman, M. (2001b) ‘Matter and Motion in the Metaphysical Foundations and the First Critique’, in Watkins, E. (ed.) Kant and the Sciences, (Oxford: Oxford University Press), 5369.CrossRefGoogle Scholar
Friedman, M. (2002) ‘Geometry as a Branch of Physics: Background and Context for Einstein's “Geometry and Experience”’, in Malament, D. (ed.) Reading Natural Philosophy: Essays in the History and Philosophy of Science and Mathematics, (Chicago: Open Court), 193229.Google Scholar
Galilei, G. (1638) Discorsi e Dimostrazioni Matematiche intorno a due nuove scienze, in Favaro, A. (ed.) (1890–1909) Opere di Galileo Galilei, vol. VIII, (Firenze: Barbera Editrice). English translation (1914) Discourses and Mathematical Demonstrations concerning Two New Sciences, by Crew, H. and de Salvio, A.(New York: Dover Publications).Google Scholar
George, A. (ed.) (1994) Mathematics and Mind, (New York: Oxford University Press).Google Scholar
Goodman, N. (1978) Ways of worldmaking, (Indianapolis: Hackett Publishing Company).Google Scholar
Gray, J. (2000) The Hilbert Challenge. A perspective on twentieth century mathematics, (New York: Oxford University Press).Google Scholar
Grene, M. (1974) The Knower and the Known, (Berkeley and Los Angeles: University of California Press).Google Scholar
Gross, D. (1995) ‘Symmetry in Physics: Wigner's Legacy’, Physics Today 50, 4650.CrossRefGoogle Scholar
Guyer, P. (1990) ‘Reason and Reflective Judgement: Kant on the Significance of Systematicity’, Nous 24, 1743.CrossRefGoogle Scholar
Hartman, R. and Schwarz, W. (eds.) (1974) Immanuel Kant: Logic, (Indianapolis: Bobbs-Merrill).Google Scholar
Hatfield, G. (1990) The Natural and the Normative: Theories of Spatial Perception from Kant to Helmholtz, (Cambridge, MA.: MIT Press).Google Scholar
Hilbert, D. (1915a) ‘Die Grundlagen der Physik (Erste Mitteilung)’, annotated ‘Erste Korrektur meiner erste Note’, printer's stamp date ‘6 Dez. 1915’. Göttingen, SUB Cod. Ms. 634. English translation (2007) as ‘The Foundations of Physics (First Communication), First Proof of my First Note’, in Renn, J. (ed.), The Genesis of General Relativity, vol. 4, Gravitation in the Twilight of Classical Physics: The Promise of Mathematics, (Dordrecht: Springer), 9891001.Google Scholar
Hilbert, D. (1915b) Die Grundlagen der Physik (Erste Mitteilung), Nachrichten Königliche Gesellschaft der Wissenschaften zu Göttingen. Mathematische-Phyikalische Klasse, 395–407. English translation (2007) as ‘The Foundations of Physics (First Communication)’, in Renn, J. (ed.), The Genesis of General Relativity, vol. 4, Gravitation in the Twilight of Classical Physics: The Promise of Mathematics, (Dordrecht: Springer), 10031015.Google Scholar
Hilbert, D. (1917) ‘Die Grundlagen der Physik (Zweite Mitteilung)’, Nachrichten Königliche Gesellschaft der Wissenschaften zu Göttingen. Mathematische-Phyikalische Klasse, 5376.Google Scholar
Hilbert, D. (1918) ‘Axiomatisches Denken’, Mathematische Annalen 78, 405–15.CrossRefGoogle Scholar
Hilbert, D. (1922) ‘Neubegründung der Mathematik’, Abhandlungen aus dem mathematischen Seminar der Hamburgischen Universität 1, 157–77.CrossRefGoogle Scholar
Hilbert, D. (1926) ‘Über das Unendliche’, Mathematische Annalen 95, 161–90.CrossRefGoogle Scholar
Hilbert, D. (1930) ‘Naturerkennen und Logik’, Die Naturwissenschften 17, 959–63. Reprinted in Hilbert (1935), 378–87.CrossRefGoogle Scholar
Hilbert, D. (1935) Gesammelte Abhandlungen. Bd. III (Berlin: J. Springer).Google Scholar
Hilbert, D. (1992) Natur und mathematische Erkennen. Vorlesungen, gehalten 1919–20 in Göttingen. Nach der Ausarbeitung von Paul Bernays, edited by Rowe, D. (Basel–Boston–Berlin: Birkhäuser).Google Scholar
Hooper, W. (1998) ‘Inertial problems in Galileo's preinertial framework’, in Machamer, P. (ed.) The Cambridge Companion to Galileo, (Cambridge: Cambridge University Press), 146174.CrossRefGoogle Scholar
Jevons, S. (1874) The Principles of Science, (London: MacMillan and Co.).Google Scholar
Kellert, S. H., Longino, H. E. and Waters, C. K. (eds.) (2006) Scientific Pluralism, Minnesota Studies in the Philosophy of Science, vol. 19, (Minneapolis: University of Minnesota Press).Google Scholar
Kitcher, P. (1983) ‘Kant's Philosophy of Science’, Midwest Studies in Philosophy, Volume VIII (Minneapolis: University of Minnesota Press), 387407.Google Scholar
Kitcher, P. (1986) ‘Projecting the Order of Nature’, in Butts, R. (ed.) Kant's Philosophy of Physical Science, Western Ontario Series in the Philosophy of Science (Dordrecht: Reidel), 201238.CrossRefGoogle Scholar
Klein, F. (1917) ‘Zu Hilberts erster Note über die Grundlagen der Physik’, Nachrichten Königliche Gesellschaft der Wissenschaften zu Göttingen. Mathematische-Phyikalische Klasse, 469–82. Reprinted, with additions, in Klein (1921), 553–67.Google Scholar
Klein, F. (1921) Gesammelte Abhandlungen, Bd.I, (Berlin: J. Springer).Google Scholar
Klein, J. (1968) Greek Mathematical Thought and the Origin of Algebra, (New York: Dover).Google Scholar
Kockelmans, J. J. (ed.) (1968) Philosophy of Science: The Historical Background, (New York: The Free Press).Google Scholar
Koyré, A. (1939) Etudes Galiléennes, (Paris: Hermann). English translation (1978) Galileo Studies, by Mepham, J., (NJ: Humanities Press).Google Scholar
Kripke, S. (1972) Naming and Necessity, in Harman, G. and Davidson, D. (eds.) Semantics of Natural Language, (Dordrecht: Reidel). Paperback edition 1981, (Oxford: Blackwell Publishers).CrossRefGoogle Scholar
Kuehn, M. (2001) Kant: A Biography, (Cambridge: Cambridge University Press).CrossRefGoogle Scholar
Laughlin, R. and Pines, D. (2000) ‘The Theory of Everything’, Proceedings of the National Academy of Science 97, 2831.CrossRefGoogle Scholar
Leibniz, G. W. (1686a) Discourse on Metaphysics, in Loemker, L. E. (ed.) (1969) Gottfried Wilhelm Leibniz: Philosophical Papers and Letters, Second Edition, (Dordrecht: Reidel).Google Scholar
Leibniz, G. (1686b) ‘General Inquiries about the Analysis of Concepts and Truths’, in Parkinson, G.H.R. (ed.) (1966) Leibniz: Logical Papers, (Oxford: Oxford University Press).Google Scholar
Leibniz, G. W. (1704) New Essays on Human Understanding, translated and edited by Remnant, P. and Bennett, J. (1981), (Cambridge: Cambridge University Press).Google Scholar
Lewis, C. I. (1929) Mind and the World Order: Outline of a Theory of Knowledge, (New York: Dover).Google Scholar
Lipschitz, R. (1877) Lehrbuch der Analysis, (Bonn: Max Cohen & Sohn).Google Scholar
Longuenesse, B. (1998) Kant and the Capacity to Judge: sensibility and discursivity in the Transcendental Analytic of the Critique of Pure Reason, (Princeton NJ: Princeton University Press).Google Scholar
Mainzer, K. (1996) Symmetries of Nature, (Berlin: de Gruyter).Google Scholar
Majer, U. (1993a) ‘Hilberts Methode der Idealen Elemente und Kants regulativer Gebrauch der Ideen’, Kant-Studien 84, 5177.CrossRefGoogle Scholar
Majer, U. (1993b) ‘Different Forms of Finitism’, in Czermak, Johannes (ed.) Philosophie der Mathematik: Akten des 15. Internationalen Wittgenstein Symposiums, (Wien: Verlag Hölder-Pichler-Tempsky), 185–94.Google Scholar
Majer, U. (1995) ‘Geometry, Intuition and Experience: From Kant to Husserl’, Erkenntnis 42, 261–85.CrossRefGoogle Scholar
Massimi, M. (2007) ‘Saving unobservable phenomena’, British Journal for the Philosophy of Science 58, 235262.CrossRefGoogle Scholar
Morrison, M. (1989) ‘Methodological Rules in Kant's Philosophy of Science’, Kant-Studien 80, 155172.CrossRefGoogle Scholar
Morrison, M. (2000) Unifying Scientific Theories: Physical Concepts and Mathematical Structures, (Cambridge: Cambridge University Press).CrossRefGoogle Scholar
Murphey, M. (2005) C. I. Lewis: The Last Great Pragmatist, (Albany, N.Y.: SUNY Press).Google Scholar
Norman, J. (2006) After Euclid, (CSLI Publications. Chicago: Chicago University Press).Google Scholar
Norton, J. (1985) ‘What Was Einstein's Principle of Equivalence?’, Studies in History and Philosophy of Science 16, 203246. Reprinted in Howard, D. and Stachel, J. (eds.) (1989) Einstein and the History of General Relativity, (Boston: Birkhäuser).Google Scholar
Parsons, C. (1984) ‘Arithmetic and the Categories’, Topoi 3, 109121.CrossRefGoogle Scholar
Paton, H. J. (1936) Kant's Metaphysic of Experience: A Commentary on the First Half of the Kritik der reinen Vernunft, 2 volumes, (London: Allen & Unwin).Google Scholar
Pauli, W. (1921) ‘Relativitätstheorie’, in Encyklopädie der mathematischen Wissenschaften, vol. 19, (Leipzig: B.G. Teubner). English translation (1958) The Theory of Relativity, (Oxford and New York: Pergamon Press).Google Scholar
Pecere, P. (2006) ‘Space, aether and the possibility of physics in Kant's late thought. From the Metaphysische Anfangsgründe der Naturwissenschaft to the Opus postumum’, in Cellucci, C. and Pecere, P. (eds.) Demonstrative and non-demonstrative reasoning in mathematics and natural science, (Edizioni dell'Università degli Studi di Cassino), 237306.Google Scholar
Plaass, P. (1965) Kants Theorie der Naturwissenschaft, (Gottingen: Vandenhoeck and Ruprecht). English translation (1994) Kant's Theory of Natural Science, (Dordrecht: Kluwer).Google Scholar
Poincaré, H. (1902) La Science et l'Hypothèse, (Paris: Flammarion). Translated as Science and Hypothesis in Poincaré (1913b).Google Scholar
Poincaré, H. (1912) ‘Pourquoi l'espace a trois dimensions’, Revue de Métaphysique et de Morale 20, 483504. Reprinted in Poincaré (1913a).Google Scholar
Poincaré, H. (1913a) Dernières Pensées, (Paris: Flammarion). Translated by Buldoc, J. (1963) as Mathematics and Science: Last Essays, (New York: Dover).Google Scholar
Poincaré, H. (1913b) The Foundations of Science, translated and edited by Halstead, G., (Lancaster: Science Press).Google Scholar
Posy, C. (1992) ‘Kant's Mathematical Realism’, in Posy, C. (ed.) Kant's Philosophy of Mathematics: Modern Essays (Kluwer).CrossRefGoogle Scholar
Posy, C. (2000) ‘Immediacy and the Birth of Reference in Kant: The Case for Space’, in Sher, G. and Tieszen, R. (eds.) Between Logic and Intuition: Essays in Honour of Charles Parsons, (Cambridge: Cambridge University Press).Google Scholar
Posy, C. (2003) ‘Between Leibniz and Mill: Kant's Logic and the Rhetoric of Psychologism’, in Jacquette, D. (ed.) Philosophy, Psychology and Psychologism (Kluwer).Google Scholar
Putnam, H. (1975) ‘The Meaning of “Meaning”’, in Mind, Language and Reality: Philosophical Papers, vol. 2, (Cambridge: Cambridge University Press).CrossRefGoogle Scholar
Putnam, H. (1981) Reason, Truth and History, (Cambridge: Cambridge University Press).CrossRefGoogle Scholar
Putnam, H. (1982) ‘Why there is not a ready-made world’, Synthese 51, 141–67.CrossRefGoogle Scholar
Reich, K. (1932) Die Vollständigkeit der kantischen Urteilstafel, (Berlin: Schoetz).Google Scholar
Reichenbach, H. (1920) Relativitätstheorie und Erkenntnis Apriori, (Berlin: Springer). English translation (1965) The Theory of Relativity and A Priori Knowledge, by Reichenbach, M., (Berkeley and Los Angeles: University of California Press).CrossRefGoogle Scholar
Reichenbach, H. (1935) Wahrschenlichkeitslehre, (Leiden: Sijthoff). English translation (1971) The Theory of Probability, by Hutten, E. H. and Reichenbach, M., second edition, (Berkeley: University of California Press).Google Scholar
Renn, J. and Stachel, J. (1999) Hilbert's Foundation of Physics: From a Theory of Everything to a Constituent of General Relativity, (Berlin: Max-Planck-Institut für Wissenschaftsgeschichte, Preprint 118). Reprinted in Renn, J. (ed.) (2007) The Genesis of General Relativity, vol. 4, Gravitation in the Twilight of Classical Physics: The Promise of Mathematics, (Dordrecht: Springer), 857973.Google Scholar
Riemann, B. (1867) ‘Über die Hypothesen, welche der Geometrie zugrunde liegen’, Göttinger Abhandlungen 13, 133152.Google Scholar
Rosenthal, S. B. (1976) The Pragmatic A Priori: A Study in the Epistemology of C. I. Lewis, (St. Louis, Missouri: Warren H. Green, Inc.).Google Scholar
Rosenthal, S. B. (2007) C. I. Lewis in Focus: The Pulse of Pragmatism, (Bloomington: Indiana University Press).Google Scholar
Ryckman, T. A. (2005) The Reign of Relativity: Philosophy in Physics 1915–1925, (Oxford: Oxford University Press).CrossRefGoogle Scholar
Salmon, W. C. (1988) ‘Rational Prediction’, in Grünbaum, A. and Salmon, W. C. (eds.) The Limitations of Deductivism, (Berkeley and Los Angeles: University of California Press), 4760.Google Scholar
Schilpp, P. A. (ed.) (1968) The Philosophy of C. I. Lewis, The Library of Living Philosophers, vol. 13, (La Salle, Illinois: Open Court).Google Scholar
Schröder, E. (1873) Lehrbuch der Arithmetik und Algebra, (Leipzig: Teubner).Google Scholar
Schultz, J. (1784) Erläuterungen über des herrn Professor Kant ‘Critik der reinen Vernunft’ (Königsberg: Hartungschen Buchhandlung). The 1791 edition is reprinted in Schultz, J. (1968) Aetas Kantiana (Bruxelles: Culture et Civilisation). English translation (1995) Exposition of Kant's ‘Critique of Pure Reason’, by Morrison, J. C., (Ottawa: University of Ottawa Press).Google Scholar
Schultz, J. (1789) Prüfung der Kantischen Critik der reinen Vernunft, (Königsberg: G. L. Hartung).Google Scholar
Scriven, M. (1962) ‘Explanations, Predictions, and Laws’, in Feigl, H. and Maxwell, G. (eds.) Scientific Explanation, Space, and Time, (Minneapolis: University of Minnesota Press), 170230.Google Scholar
Stachel, J. (1980) ‘Einstein and the Rigidly Rotating Disk’, in Held, A. (ed.) General Relativity and Gravitation, (New York: Plenum). Reprinted as ‘The Rigidly Rotating Disk as the ‘Missing Link’ in the History of General Relativity', in Howard, D. and Stachel, J. (eds.) (1989) Einstein and the History of General Relativity, (Boston: Birkhäuser).Google Scholar
Stein, H. (1977) ‘Some philosophical prehistory of General Relativity’, in Earman, John et al. (eds.) Foundations of Space-Time Theories, (Minneapolis: University of Minnesota Press), 349.Google Scholar
Stein, H. (1990) ‘Eudoxus and Dedekind: On the Ancient Greek Theory of Ratios and Its Relation to Modern Mathematics’, Synthese 84, 163211.Google Scholar
Stosch, G. J. E. (1772) Versuch in richtiger Bestimmung einiger gleichbedeutenden Wörter der deutschen Sprache, (Frankfurt an der Oder: Anton Gottfried Brauns Wittwe).Google Scholar
Sutherland, D. (2004) ‘Kant's Philosophy of Mathematics and the Greek Mathematical Tradition’, Philosophical Review 113, 157201.CrossRefGoogle Scholar
Sutherland, D. (2006) ‘Kant on Arithmetic, Algebra, and the Theory of Proportions,’ Journal of the History of Philosophy 44, 533558.CrossRefGoogle Scholar
Tait, W. (2005) ‘Frege versus Cantor and Dedekind: On the Concept of Number’, in Tait, W.The Provenance of Pure Reason. Essays in the Philosophy of Mathematics and its History, (New York: Oxford University Press), 212251.Google Scholar
Teller, P. (2001) ‘Whither Constructive Empiricism?’, Philosophical Studies 106, 123–50.CrossRefGoogle Scholar
Thomae, J. (1880/1898) Elementare Theorie der analytischen Functionen einer complexen Veränderlichen, (Halle a.S.: Nebert).Google Scholar
Torretti, R. (1990) Creative Understanding: Philosophical Reflections on Physics, (Chicago and London: University of Chicago Press).CrossRefGoogle Scholar
van Fraassen, B. (1990) Laws and Symmetry, (New York: Oxford University Press).Google Scholar
van Fraassen, B. (2001) ‘Constructive Empiricism Now’, Philosophical Studies 106, 151–70.CrossRefGoogle Scholar
van Fraassen, B. (2006) ‘Structure: its Shadow and Substance’, British Journal for the Philosophy of Science 57, 275307.CrossRefGoogle Scholar
van Fraassen, B. (2008) Scientific representation: paradoxes of perspective (Oxford: Oxford University Press).CrossRefGoogle Scholar
Weinberg, S. (1993) Dreams of a Final Theory, (Cambridge, MA.: Harvard University Press).Google Scholar
Wigner, E. (1967) Symmetries and Reflections, (Bloomington: Indiana University Press).Google Scholar
Wigner, E. P. (1995) Philosophical Reflections and Syntheses, edited by Mehra, J. and Wightman, A., (Berlin–Heidelberg–New York: Springer Verlag).Google Scholar
Wisan, W. L. (1978) ‘Galileo's scientific method: a re-examination’, in Butts, R. and Pitt, J. (eds.) New Perspectives on Galileo, (Dordrecht: Reidel), 158.Google Scholar
Woodward, J. (2003) Making Things Happen, (Oxford: Oxford University Press).Google Scholar