Published online by Cambridge University Press: 23 May 2018
We present singularity-free workspace optimization of a class of two-degree-of-freedom (2-DoF) parallel wrists with large rotation range capability. The wrists in consideration are kinematically equivalent to two families of 2-DoF homokinetic couplings. The first family comprises fully parallel wrists with N (N ≥ 3) double-universal ($\mathcal{UU}$) legs. The second family comprises spherical N-$\mathcal{UU}$ parallel wrists with interconnecting revolute ($\mathcal{R}$) joints. Both families belong to the more general class of zero-torsion parallel manipulators, and are, therefore, collectively referred to as zero-torsion wrists (ZTWs). We carry out a unified singularity-free workspace optimization by utilizing geometric properties of zero-torsion motion manifolds. Our work may serve as a conceptual guide to the design of ZTWs for large tilt-angle applications.