Published online by Cambridge University Press: 13 February 2012
In this paper we address the problem of stabilization and local positioning of a four-rotor rotorcraft using computer vision. Our approaches to estimate the orientation and position of the rotorcraft combine the measurements from an Inertial Measurement Unit (IMU) and a vision system composed of a single camera. In the first stage, the vision system is used to estimate the position and yaw angle of the rotorcraft, while in the second stage the vision system is used to estimate the translational velocity of the flying robot. In both cases the IMU gives the pitch and roll angles at a higher rate. The technique used to estimate the position of the rotorcraft in the first stage combines the homogeneous transformation approach for the camera calibration process with the plane-based pose method for estimating the position. In the second stage, a navigation system using the optical flow is also developed to estimate the translational velocity of the aircraft. We present real-time experiments of stabilization and location of a four-rotor rotorcraft.