Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-28T00:11:50.276Z Has data issue: false hasContentIssue false

Teleoperation of a mobile robot with time-varying delay and force feedback

Published online by Cambridge University Press:  26 April 2011

Emanuel Slawiñski*
Affiliation:
Instituto de Automática (INAUT), Universidad Nacional de San Juan., Av. Libertador San Martín 1109 (oeste), J5400ARL San Juan, Argentina E-mails: [email protected], [email protected], [email protected]
Vicente Mut
Affiliation:
Instituto de Automática (INAUT), Universidad Nacional de San Juan., Av. Libertador San Martín 1109 (oeste), J5400ARL San Juan, Argentina E-mails: [email protected], [email protected], [email protected]
Lucio Salinas
Affiliation:
Instituto de Automática (INAUT), Universidad Nacional de San Juan., Av. Libertador San Martín 1109 (oeste), J5400ARL San Juan, Argentina E-mails: [email protected], [email protected], [email protected]
Sebastian García
Affiliation:
Instituto de Automática (INAUT), Universidad Nacional de San Juan., Av. Libertador San Martín 1109 (oeste), J5400ARL San Juan, Argentina E-mails: [email protected], [email protected], [email protected]
*
*Corresponding author. E-mail: [email protected]

Summary

This paper proposes a prediction system and a command fusion to help the human operator in a teleoperation system of a mobile robot with time-varying delay and force feedback. The command fusion is used to join a remote controller and the delayed user's commands. Besides, a predictor is proposed since the future trajectory of the mobile robot is not known a priori being it decided online by the user. The command fusion and predictor are designed based on the time delay and the current context measured through the crash probability. Finally, the proposed scheme is tested from teleoperation experiments considering time-varying delay as well as force feedback.

Type
Articles
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Aicardi, M., Casalino, G., Bicchi, A. and Balestrino, A., “Closed loop steering of unicycle-like vehicles via lyapunov techniques,” IEEE Robot. Autom. Mag. 2, 2735 (1995).CrossRefGoogle Scholar
2.Anderson, R. J. and Spong, M., “Bilateral control of teleoperators with time delay,” IEEE Trans. Autom. Control 34 (5), 494501 (1989).Google Scholar
3.Arcara, P. and Melchiorri, C., “Control schemes for teloperation with time delay: A comparative study,” Robot. Auton. Syst. 38, 4964 2002.Google Scholar
4.Bejczy, A. K., Kim, W. S. and Venema, S. C., “The Phantom Robot: Predictive Displays for Teleoperation with Time Delay,” Proceedings of the IEEE International Conference on Robotics and Automation, Cincinnati, OH, USA (1990) pp. 546551.CrossRefGoogle Scholar
5.Brady, K. and Tarn, T. J., “Internet-Based Teleoperation,” Proceedings of the 2000 IEEE International Conference on Robotics and Automation, Seoul, Korea (2000) pp. 843848.Google Scholar
6.Elhajj, I., Xi, N. and Fung, W. K., Liu, Y.-H., Hasegawa, Y. and Fukuda, T., “Supermedia-enhanced internet-based telerobotics,” Proc. IEEE, 91 (3), 396421 (2003).Google Scholar
7.Funda, J. and Paul, R. P., “Teleprogramming: Toward delay-invariant remote manipulation,” Presence: Teleoperators and Virtual Environ. 1 (1), 2944 (1992).CrossRefGoogle Scholar
8.Hernando, M. and Gambao, E., “A Robot Teleprogramming Architecture,” Proceedings of the International Conference on Advanced Intelligent Mechatronics, Port Island, Kobe, Japan (2003) pp. 11131118.Google Scholar
9.Hokayem, P. F. and Spong, M. W., “Bilateral teleoperation: An historical survey,” Automatica 42, 20352057 (Dec. 2006).Google Scholar
10.Khalil, H. K.. Nonlinear Systems, 2nd ed. (Prentice Hal1 Editorial, Upper Saddle River, NJ, USA, 1996) ISBN 0-13-228024-8.Google Scholar
11.Kikuchi, J., Takeo, K. and Kosuge, K., “Teleoperation System via Computer Network for Dynamic Environment,” Proceedings of the 1998 IEEE International Conference on Robotics and Automation, Leuven, Belgium (1998) pp. 35343539.Google Scholar
12.Kim, W., Hannaford, B. and Bejczy, A., “Force reflection and shared compliant control in operating telemanipulators with time delay,” IEEE Trans. Robot. Autom. 8 (2), 176185 (1992).CrossRefGoogle Scholar
13.Lawrence, D. A., “Stability and transparency in bilateral teleoperation,” IEEE Trans. Robot. Autom. 9 (5), 624637 (1993).Google Scholar
14.Lee, D. J., Martinez-Palafox, O. and Spong, M. W., “Bilateral Teleoperation of a Wheeled Mobile Robot over Delayed Communication Networks,” Proceedings of IEEE International Conference on Robotics and Automation, Orlando, FL, USA (2006) pp. 32983303.Google Scholar
15.Loría, A. and Panteley, E., “Chapter 2. Cascaded Non-Linear Time-Varying Systems: Analysis and Design,” In: Advanced Topics in Control Systems Theory, Lecture notes in Control and Information Sciences, Springer, Berlin (2005).Google Scholar
16.Niculescu, S. I., Delay Effects on Stability (Springer Verlag, New York, USA, 2001).Google Scholar
17.Niemeyer, G. and Slotine, J. J. E., “Stable adaptive teleoperation,” IEEE J. Ocean. Eng. 16 (1), 152162 (1991).Google Scholar
18.Park, J. H. and Cho, H. C., “Sliding-mode Control of Bilateral Teleoperation Systems with Force-Reflection on the Internet,” Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, Takamatsu, Japan (2000) pp. 11871192.Google Scholar
19.Richard, J. P., “Time-delay systems: An overview of some recent advances and open problems,” Automatica 39, 16671694 (2003).Google Scholar
20.Sheridan, T. B., Telerobotics, Automation, and Human Supervisory Control (The MIT Press, Cambrige, MA, USA, 1992).Google Scholar
21.Sheridan, T. B., “Teleoperation, telerobotics and telepresence: A progress report,” Control Eng. Pract. 3 (2), 205214 (1995).CrossRefGoogle Scholar
22.Slawiñski, E., Mut, V. and Postigo, J. F., “Stability of systems with time-varying delay,” Latin Am. Appl. Res. 36 (1), 4148 (2006).Google Scholar
23.Slawiñski, E., Mut, V. and Postigo, J., “Teleoperation of mobile robots with time-varying delay,” IEEE Trans. Robot. 23 (5), 10711082 (2007).Google Scholar
24.Stramigioli, S., Secchi, C., van der Schaft, A. J. and Fantuzzi, C., “Sampled data systems passivity and discrete port-hamiltonian systems,” IEEE Trans. Robot. 21 (4), 574587 (2005).CrossRefGoogle Scholar
25.Natori, K., Tsuji, T., Ohnishi, K. and Hace, A., “Time-delay compensation by communication disturbance observer for bilateral teleoperation under time-varying delay,” IEEE Trans. Ind. Electron. 57 (3), 10501062 (2010).Google Scholar
26.Sanders, D., “Comparing ability to complete simple tele-operated rescue or maintenance mobile-robot tasks with and without a sensor system,” Sensor Rev. 30 (1), 4050 (2010).Google Scholar
27.Slawinski, E. and Mut, V., “Control scheme including prediction and augmented reality for teleoperation of mobile robots,” Robotica 28, 1122 (2010).Google Scholar
28.Al-Mouhamed, M. A., Nazeeruddin, M. and Islam, S. M. S., “Experimental evaluation of feedback modalities for five teleoperation tasks,” IEEE Trans. Instrum. Meas. 59 (2), 361371 (2010).Google Scholar
29.Cho, S. K., Jin, H. Z., Lee, J. M. and Yao, B., “Teleoperation of a mobile robot using a force-reflection joystick with sensing mechanism of rotating magnetic field,” IEEE-ASME Trans. Mechatronics 15 (1), 1726 (2010).Google Scholar
30.Sanders, D., “Analysis of the effects of time delays on the teleoperation of a mobile robot in various modes of operation,” Ind. Robot: Int. J. 36 (6), 570584 (2009a).CrossRefGoogle Scholar
31.Lam, T. M., Boschloo, H. W., Mulder, M. and van Paassen, M. M., “Artificial force field for haptic feedback in UAV teleoperation,” IEEE Trans. Syst. Man Cybern. 39 (6)13161330 (2009).Google Scholar
32.Fujita, H. and Namerikawa, T., “Delay-Independent Stabilization for Teleoperation with Time Varying Delay,” Proceedings of the Conference Information: American Control Conference 2009, St. Louis, MO, USA (Jun. 1012, 2009) pp. 54595464.Google Scholar
33.Vittorias, I., Kammerl, J., Hirche, S. and Steinbach, E., “Perceptual Coding of Haptic Data in Time-Delayed Teleoperation,” Proceedings of the Conference Information: 3rd Joint EuroHaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, Salt Lake City, UT, USA (Mar. 18–20, 2009) pp. 208213.Google Scholar
34.Sanders, D., “Comparing speed to complete progressively more difficult mobile robot paths between human tele-operators and humans with sensor-systems to assist,” Assem. Autom. 29 (3), 230248 (2009).Google Scholar
35.Shahdi, A. and Sirouspour, S., “Adaptive/robust control for time-delay teleoperation,” IEEE Trans. Robot. 25 (1), 196205 (2009).Google Scholar
36.Diolaiti, and Melchiorri, C., “Teleoperation of a Mobile Robot through Haptic Feedback,” Proceedings of the IEEE International Workshop on Haptic Virtual Environments and Their Applications (HAVE '02), Ottawa, ON, Canada (Nov. 17–18, 2002) pp. 6772.Google Scholar