Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-08T20:07:51.992Z Has data issue: false hasContentIssue false

Singularity analysis of the H4 robot using Grassmann–Cayley algebra

Published online by Cambridge University Press:  12 January 2012

Semaan Amine
Affiliation:
Institut de Recherche en Communications et Cybernétique de Nantes (IRCCyN), 1, rue de la Noë, 44321 Nantes, France. E-mails: [email protected], [email protected], [email protected], [email protected]
Stéphane Caro*
Affiliation:
Institut de Recherche en Communications et Cybernétique de Nantes (IRCCyN), 1, rue de la Noë, 44321 Nantes, France. E-mails: [email protected], [email protected], [email protected], [email protected]
Philippe Wenger
Affiliation:
Institut de Recherche en Communications et Cybernétique de Nantes (IRCCyN), 1, rue de la Noë, 44321 Nantes, France. E-mails: [email protected], [email protected], [email protected], [email protected]
Daniel Kanaan
Affiliation:
Institut de Recherche en Communications et Cybernétique de Nantes (IRCCyN), 1, rue de la Noë, 44321 Nantes, France. E-mails: [email protected], [email protected], [email protected], [email protected]
*
*Corresponding author. E-mail: [email protected]

Summary

This paper extends a recently proposed singularity analysis method to lower-mobility parallel manipulators having an articulated nacelle. Using screw theory, a twist graph is introduced in order to simplify the constraint analysis of such manipulators. Then, a wrench graph is obtained in order to represent some points at infinity on the Plücker lines of the Jacobian matrix. Using Grassmann–Cayley algebra, the rank deficiency of the Jacobian matrix amounts to the vanishing condition of the superbracket. Accordingly, the parallel singularities are expressed in three different forms involving superbrackets, meet and join operators, and vector cross and dot products, respectively. The approach is explained through the singularity analysis of the H4 robot. All the parallel singularity conditions of this robot are enumerated and the motions associated with these singularities are characterized.

Type
Articles
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Merlet, J. P., “Singular configurations of parallel manipulators and Grassmann geometry,” Int. J. Robot. Res. 8 (5), 4556 (1989).CrossRefGoogle Scholar
2. Angeles, J., Caro, S. and Morozov, A. W. K., “The design and prototyping of an innovative Schonflies motion generator,” IMechE Part C, J. Mech. Eng. Sci., Special Issue: Kinematics, Kinematic Geometry and their applications 220 (C7), 935944 (July 2006).CrossRefGoogle Scholar
3. Merlet, J. P., “A formal–numerical approach for robust in-workspace singularity detection,” IEEE Trans. Robot. 23 (3), 393402 (June 2007).CrossRefGoogle Scholar
4. Li, Q. and Huang, Z., “Mobility Analysis of Lower-Mobility Parallel Manipulators Based on Screw Theory,” Proceedings of the IEEE International Conference on Robotics and Automation, Taipei, Taiwan (Sep. 14–19, 2003) pp. 11791184.Google Scholar
5. Fang, Y. and Tsai, L. W., “Structure synthesis of a class of 4-DoF and 5-DoF parallel manipulators with identical limb structures,” Int. J. Robot. Res. 21 (9), 799810 (2002).CrossRefGoogle Scholar
6. Zlatanov, D., Fenton, R. G. and Benhabib, B., “Singularity Analysis of Mechanisms and Robots via a Velocity–Equation Model of the Instantaneous Kinematics,” Proceedings of the IEEE International Conference on Robotics and Automation, San Diego, CA, USA (May 8–13, 1994) pp. 986991.Google Scholar
7. Ball, R. S., A Treatise on the Theory of Screws (Cambridge University Press, Cambridge, MA, 1900).Google Scholar
8. Waldron, K. J., ‘The Mobility of Linkages’. Ph.D. Thesis (Stanford, CA: Stanford University, 1969).Google Scholar
9. Hunt, K. H., Kinematic Geometry of Mechanisms (Clarendon Press, Oxford, 1978).Google Scholar
10. Kong, X. and Gosselin, C., Type Synthesis of Parallel Mechanisms (Springer, Heidelberg, 2007) vol. 33.Google Scholar
11. Amine, S., Kanaan, D., Caro, S. and Wenger, P., “Constraint and Singularity Analysis of Lower-Mobility Parallel Manipulators with Parallelogram Joints”. Proceedings of the ASME 2010 International Design Engineering Technical Conferences, no. 28483 in DETC2010, Montreal, Quebec, Canada (Aug. 15–18, 2010).Google Scholar
12. Joshi, S. A. and Tsai, L. W., “Jacobian analysis of limited-DOF parallel manipulators,” ASME J. Mech. Des. 124 (2), 254258 (June 2002).CrossRefGoogle Scholar
13. Zlatanov, D., Bonev, I. and Gosselin, C. M., “Constraint Singularities of Parallel Mechanisms,” Proceedings of the IEEE International Conference on Robotics and Automation, Washington, DC, USA (May 11–15, 2002) pp. 496502.Google Scholar
14. Ben-Horin, P. and Shoham, M., “Singularity analysis of parallel robots based on Grassmann–Cayley algebra,” Proceedings of the International Workshop on Computational Kinematics, Cassino, Italy (May 4–6, 2005).Google Scholar
15. Ben-Horin, P. and Shoham, M., “Singularity analysis of a class of parallel robots based on Grassmann–Cayley algebra,” Mech. Mach. Theory 41 (8), 958970 (2006).CrossRefGoogle Scholar
16. Ben-Horin, P. and Shoham, M., “Application of Grassmann–Cayley algebra to geometrical interpretation of parallel robot singularities,” Int. J. Robot. Res. 28 (1), 127141 (2009).CrossRefGoogle Scholar
17. Kanaan, D., Wenger, P., Caro, S. and Chablat, D., “Singularity analysis of lower-mobility parallel manipulators using Grassmann–Cayley algebra,” IEEE Trans. Robot. 25, 9951004 (2009).CrossRefGoogle Scholar
18. Mohamed, M. and Duffy, J., “A direct determination of the instantaneous kinematics of fully parallel robot manipulators,” ASME J. Mech. Transm. Autom. Des. 107 (2), 226229 (1985).CrossRefGoogle Scholar
19. White, N. L., “The bracket ring of a combinatorial geometry. I,” Trans. Am. Math. Soc. 202, 7995 (1975).CrossRefGoogle Scholar
20. White, N. L., “The bracket of 2-extensors,” Congressus Numerantium 40, 419428 (1983).Google Scholar
21. White, N. L., Grassmann–Cayley Algebra and Robotics Applications (Handbook of Geometric Computing, 2005) vol. VIII. Springer, Berlin Heidelberg.CrossRefGoogle Scholar
22. McMillan, T., Invariants of Antisymmetric Tensors Ph.D. Thesis (University of Florida, Gainesville, 1990).Google Scholar
23. Pierrot, F. and Company, O., “H4: A New Family of 4-dof Parallel Robots,” Proceedings of the IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Atlanta, Georgia, USA (Sep. 19–22, 1999) pp. 508513.Google Scholar
24. Pierrot, F., Marquet, F., Company, O. and Gil, T.. “H4 Parallel Robot: Modeling, Design and Preliminary Experiments,” Proceedings of the IEEE International Conference on Robotics and Automation, Seoul, Korea (May 21–26, 2001) vol. 4, pp. 32563261.Google Scholar
25. Gregorio, R. D., “Determination of singularities in Delta-like manipulators,” Int. J. Robot. Res. 23 (1), 8996 (January 2004).CrossRefGoogle Scholar
26. Zhao, T. S., Dai, J. S. and Huang, Z., “Geometric analysis of overconstrained parallel manipulators with three and four degrees of freedom,” JSME Int. J. Ser. C: Mech. Syst. Mach. Elem. Manuf. 45 (3), 730740 (2002).CrossRefGoogle Scholar
27. Angeles, J., “The qualitative synthesis of parallel manipulators,” ASME J. Mech. Des. 126 (4), 617624 (July 2004).CrossRefGoogle Scholar
28. Caro, S., Khan, W. A., Pasini, D. and Angeles, J., “The rule-based conceptual design of the architecture of serial Schönflies-motion generators,” Mech. Mach. Theory 45 (2), 251260 (2010).CrossRefGoogle Scholar
29. Wolf, A. and Shoham, M., “Investigation of parallel manipulators using linear complex approximation,” ASME J. Mech. Des. 125, 564572 (2003).CrossRefGoogle Scholar
30. Krut, S., Contribution L'étude des Robots Parallèles Légers, 3T-1R et 3T-2R, à Forts Débattements Angulaires Ph.D. Thesis (Montpellier, France: Université Montpellier II, 2003).Google Scholar
31. Wu, J., Yin, Z. and Xiong, Y., “Singularity analysis of a novel 4-dof parallel manipulator H4,” Int. J. Adv. Manuf. Technol. 29, 794802 (2006).CrossRefGoogle Scholar
32. Amine, S., Kanaan, D., Caro, S. and Wenger, P., “Singularity Analysis of Lower-Mobility Parallel Robots with an Articulated Nacelle,” In: Advances in Robot Kinematics: Motion in Man and Machine 2010, Part 5, (Springer, Berlin, 2010) pp. 273282.CrossRefGoogle Scholar
33. Nabat, V., Rodriguez, M. de la O, Company, O., Krut, S. and Pierrot, F.. “Par4: Very High Speed Parallel Robot for Pick-and-Place”. Proceedings of the Intelligent Robots and Systems, IEEE/RSJ International Conference, Edmonton, Alberta, Canada (Aug. 2005) pp. 553558.Google Scholar