Published online by Cambridge University Press: 09 March 2009
In this paper, we propose a robust controller for the tracking of robot motion. This controller is a nonlinear-based controller that compensates for the uncertainties present in the manipulator dynamic equation. The main result of this paper is that we explicitly show how the response of the tracking error can be modified by adjusting the control parameters. The corresponding stability result for the tracking error is Global Exponential Stability (GES). We then illustrate how similar control approaches are related to the proposed controller. Finally, simulation and experimental results are utilized to illustrate the performance of the robust controller.