Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-24T23:58:53.085Z Has data issue: false hasContentIssue false

Robotic Assembly by Slight Random Movements

Published online by Cambridge University Press:  09 March 2009

F. Badano
Affiliation:
Laboratoire d' Automatique Industrielle, Institut National des Sciences Appliquées, 20 Av. Albert Einstein, 69621 Villeurbanne Cedex (France)
M. Betemps
Affiliation:
Laboratoire d' Automatique Industrielle, Institut National des Sciences Appliquées, 20 Av. Albert Einstein, 69621 Villeurbanne Cedex (France)
T. Redarce
Affiliation:
Laboratoire d' Automatique Industrielle, Institut National des Sciences Appliquées, 20 Av. Albert Einstein, 69621 Villeurbanne Cedex (France)
A. Jutard
Affiliation:
Laboratoire d' Automatique Industrielle, Institut National des Sciences Appliquées, 20 Av. Albert Einstein, 69621 Villeurbanne Cedex (France)

Summary

In this paper we develop a compilant system that permits robotic assembly of chamferless pieces. The idea is to absorb the positioning error between parts to be inserted by giving one of them a planar random movement. An actuator consisting of two axes (X and y) operated by an electromagnetic System is fitted to the work table; when its inputs are pseudo-random binary signais (P.R.B.S.) random motion is obtained. The trajectories of the actuator are analysed depending upon the P.R.B.S. parameters and a peg-in-a-hole assembly task is carried out. Experimental results show that large positioning errors can be compensated for chamferless insertions.

Type
Article
Copyright
Copyright © Cambridge University Press 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Cho, H.S., Warnecke, H.J. and Gweon, D.G., “Robotic assembly: a synthesizing overviewRobotica 5, 153165 (1987).CrossRefGoogle Scholar
2.Nevins, J.L., “Folded remote center compliance device” U.S. Patent 4,355,469 (10 26, 1982).Google Scholar
2.Whitney, D.E., “Damped remote center compliance device” U.S. Patent 4,379,363 (04 12, 1983).Google Scholar
4.Jutard, A., Redarce, T., Fakri, A. and Betemps, M., “Geometric model of the DCR-LAI compilant deviceRobotica 7, 151157 (1989).CrossRefGoogle Scholar
5.Hoffman, B., Pollack, S. and Weissman, B., “Vibratory insertion process: a new approach to non-standard component insertionRobot 8, 8–1–10 (1985).Google Scholar
6.Jeong, K. Won and Cho, H. Suck, “Development of a pneumatic vibratory wrist for robotic assemblyRobotica 7, 916 (1989).CrossRefGoogle Scholar
7.Jeong, K. Won and Cho, H. Suck, “Assembly performance of a robotic vibratory wrist” 6th Symposium on Information Control Problems in Manufacturing Technology, Madrid, Spain (09, 1989).Google Scholar
8.Ohishi, M., Kakinuma, T. and Yokoyama, S., “One procedure concerning the peg-hole insertion of the assembly process15th International Symposium on Industrial Robots 811817 (1985).Google Scholar
9.Redarce, T., Fakri, A., Jutard, A. and Yonnet, J.P., “A compliant and electromagnetic table with partial levitation for robotic assemblyProceedings of the 8th Annual British Robot Association ConferenceBirmingham, U.K. (141705, 1985).Google Scholar
10.Davies, W.D.T., System Identification for Self-Adaptive Control (Pitman Press, London, 1970).Google Scholar
11.Ye, N., Simon, J.P. and Betemps, M., “An automatic measurement System for robot static and dynamic performances” Proceedings of the IASTED International Symposium: Modelling, Identification and Control, Grindelwald, Switzerland (02 710, 1989).Google Scholar
12.Arai, T. and Kinoshita, N., “The part mating forces that arise when using a worktable with complianceAssembly Automation I, No. 4, 204210 (08, 1981).CrossRefGoogle Scholar