Hostname: page-component-7479d7b7d-pfhbr Total loading time: 0 Render date: 2024-07-09T02:36:22.389Z Has data issue: false hasContentIssue false

Robot base placement and tool mounting optimization based on capability map for robot-assistant camera holder

Published online by Cambridge University Press:  27 May 2024

Amir Trabelsi
Affiliation:
Department of GMSC, Pprime Institute CNRS, ENSMA, University of Poitiers, UPR 3346, Poitiers, France National Engineering School of Sousse, LMS, University of Sousse, Sousse, Tunisia
Juan Sandoval
Affiliation:
Nantes Université, École Centrale Nantes, CNRS, LS2N, UMR 6004, Nantes, France
Abdelfattah Mlika
Affiliation:
National Engineering School of Sousse, LMS, University of Sousse, Sousse, Tunisia
Samir Lahouar
Affiliation:
National Engineering School of Monastir, LGM, University of Monastir, Monastir, Tunisia
Said Zeghloul
Affiliation:
Department of GMSC, Pprime Institute CNRS, ENSMA, University of Poitiers, UPR 3346, Poitiers, France
Med Amine Laribi*
Affiliation:
Department of GMSC, Pprime Institute CNRS, ENSMA, University of Poitiers, UPR 3346, Poitiers, France
*
Corresponding author: Med Amine Laribi; Email: [email protected]

Abstract

In the field of laparoscopic surgery, research is currently focusing on the development of new robotic systems to assist practitioners in complex operations, improving the precision of their medical gestures. In this context, the performance of these robotic platforms can be conditioned by various factors, such as the robot’s accessibility and dexterity in the task workspace. In this paper, we present a new strategy for improving the kinematic and dynamic performance of a 7-degrees of freedom robot-assisted camera-holder system for laparoscopic surgery. This approach involves the simultaneous optimization of the robot base placement and the laparoscope mounting orientation. To do so, a general robot capability representation approach is implemented in an innovative multiobjective optimization algorithm. The obtained results are first evaluated in simulation and then validated experimentally by comparing the robot’s performances implementing both the existing and the optimized solution. The optimization result led to a 2% improvement in the accessibility index and a 14% enhancement in manipulability. Furthermore, the dynamic performance criteria resulted in a substantial 43% reduction in power consumption.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Grau, L., Lingamfelter, M., Ponzio, D., Post, Z., Ong, A., Le, D. and Orozco, F., “Robotic arm assisted total knee arthroplasty workflow optimization, operative times and learning curve,” Arthropl Today 5(4), 465470 (2019). doi: 10.1016/j.artd.2019.04.007.CrossRefGoogle ScholarPubMed
Kuo, C.-H. and Dai, J. S., “Robotics for Minimally Invasive Surgery: A Historical Review from the Perspective of Kinematics,” In: International Symposium on History of Machines and Mechanisms, (2009) pp. 337354. doi: 10.1007/978-1-4020-9485-9_24.CrossRefGoogle Scholar
Laribi, M. A., Arsicault, M., Riviere, T. and Zeghloul, S., “Toward New Minimally Invasive Surgical Robotic System,” In: IEEE International Conference on Industrial Technology, (2012) pp. 504509. doi: 10.1109/ICIT.2012.6209988.CrossRefGoogle Scholar
Abbas, P., Holder-Haynes, J., Taylor, D. J., Scott, B. G., Brandt, M. L. and Naik-Mathuria, B., “More than a camera holder: Teaching surgical skills to medical students,” J Surg Res 195(2), 385389 (2015). doi: 10.1016/j.jss.2015.01.035.CrossRefGoogle ScholarPubMed
George, E. I., Brand, T. C., LaPorta, A., Marescaux, J. and Satava, R. M., “Origins of robotic surgery: From skepticism to standard of care,” JSLS : J Soci Laparoendo Surg 22(4), e2018.00039 (2018). doi: 10.4293/JSLS.2018.00039.CrossRefGoogle ScholarPubMed
Sandoval, J., Laribi, M. A., Faure, J.-P., Breque, C., Richer, J.-P. and Zeghloul, S., “Towards an autonomous robot-assistant for laparoscopy using exteroceptive sensors: Feasibility study and implementation,” IEEE Robot Autom Lett 6(4), 64736480 (2021). doi: 10.1109/LRA.2021.3094644.CrossRefGoogle Scholar
Sadeghian, H., Zokaei, F. and Hadian Jazi, S., “Constrained kinematic control in minimally invasive robotic surgery subject to remote center of motion constraint,” J Intell Robot Syst: Theory Appl 95(3-4), 901913 (2019). doi: 10.1007/s10846-018-0927-0.CrossRefGoogle Scholar
Aghakhani, N., Geravand, M., Shahriari, N., Vendittelli, M. and Oriolo, G., “Task Control with Remote Center of Motion Constraintfor Minimally Invasive Robotic Surgery,” In: IEEE International Conference on Robotics and Automation (ICRA), (2013) pp. 5863.Google Scholar
Yang, D., Wang, L., Xie, Y., Levine, W. S., Davoodi, R. and Li, Y., “Optimization-Based Inverse Kinematic Analysis of an Experimental Minimally Invasive Robotic Surgery System,” In: IEEE International Conference on Robotics and Biomimetics (ROBIO), (2015) pp. 14271432. doi: 10.1109/ROBIO.2015.7418971.CrossRefGoogle Scholar
Sandoval, J., Poisson, G. and Vieyres, P., “Improved Dynamic Formulation for Decoupled Cartesian Admittance Control and RCM Constraint,” In: IEEE International Conference on Robotics and Automation (ICRA), (2016) pp. 11241129. doi: 10.1109/ICRA.2016.7487242.CrossRefGoogle Scholar
Sadeghian, H., Villani, L., Keshmiri, M. and Siciliano, B., “Task-space control of robot manipulators with null-space compliance,” IEEE Trans Robot 30(2), 493506 (2014). doi: 10.1109/TRO.2013.2291630.CrossRefGoogle Scholar
Kuo, C. H., Dai, J. S. and Dasgupta, P., “Kinematic design considerations for minimally invasive surgical robots: An overview,” Int J Med Robot Comp Ass Surg 8(2), 127145 (2012). doi: 10.1002/rcs.453.CrossRefGoogle ScholarPubMed
Kalawoun, R., Lengagne, S. and Mezouar, Y., “Optimal Robot Base Placements for Coverage Tasks,” In: IEEE 14th International Conference on Automation Science and Engineering (CASE), (2018) pp. 235240. doi: 10.1109/COASE.2018.8560402.CrossRefGoogle Scholar
Vahrenkamp, N., Asfour, T. and Dillmann, R., “Robot Placement based on Reachability Inversion,” In: 2013 International Conference on Robotics and Automation (ICRA), (2013) pp.19701975.Google Scholar
Spensieri, D., Carlson, J. S., Bohlin, R., Kressin, J. and Shi, J., “Optimal robot placement for tasks execution,” Procedia CIRP 44, 395400 (2016). doi: 10.1016/j.procir.2016.02.105.CrossRefGoogle Scholar
Zeghloul, S. and Pamanes-Garcia, J. A., “Multi-criteria optimal placement of robots in constrained environments,” Robotica 11(2), 105110 (1993). doi: 10.1017/S0263574700019202.CrossRefGoogle Scholar
Feng, M., Jin, X., Tong, W., Guo, X., Zhao, J. and Fu, Y., “Pose optimization and port placement for robot-assisted minimally invasive surgery in cholecystectomy,” Int J Med Robot Comp Ass Surg 13(4), e1810 (2017). doi: 10.1002/rcs.1810.CrossRefGoogle ScholarPubMed
Trabelsi, A., Sandoval, J., Mlika, A., Lahouar, S., Zeghloul, S., Cau, J. and Laribi, M. A., “Optimal Multi-Robot Placement Based on Capability Map for Medical Applications,” In: Mechanisms and Machine Science, (2022) pp. 333342. doi: 10.1007/978-3-031-04870-8_39.CrossRefGoogle Scholar
Liang, J., “A research on the mounted configuration of end-effector for robotic drilling,” Robotica 33(10), 21562165 (2015). doi: 10.1017/S0263574714001313.CrossRefGoogle Scholar
Pham, C. D., Coutinho, F., Leite, A. C., Lizarralde, F., From, P. J. and Johansson, R., “Analysis of a moving remote center of motion for robotics-assisted minimally invasive surgery,” In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), (2015) pp.14401446. doi: 10.1109/IROS.2015.7353557.CrossRefGoogle Scholar
Zacharias, F., Borst, C., Wolf, S. and Hirzinger, G., “The capability map: A tool to analyze robot arm workspaces,” Int J Hum Robot 10(4), 1350031 (2013). doi: 10.1142/S021984361350031X.CrossRefGoogle Scholar
Laribi, M. A., Riviere, T., Arsicault, M. and Zeghloul, S., “A Design of Slave Surgical Robot Based on Motion Capture,” In: IEEE International Conference on Robotics and Biomimetics (ROBIO), (2012) pp.600605. doi: 10.1109/ROBIO.2012.6491032.CrossRefGoogle Scholar
Makhal, A. and Goins, A. K., “Reuleaux: Robot Base Placement by Reachability Analysis,” In: Proceedings - 2nd IEEE International Conference on Robotic Computing, IRC 2018, (2018) pp.137142. doi: 10.1109/IRC.2018.00028.CrossRefGoogle Scholar
Saff, E. B. and Kuijlaars, A. B. J., “Distributing many points on a sphere,” Mathemat Intelli 19(1), 511 (1997). doi: 10.1007/BF03024331.CrossRefGoogle Scholar
He, Y. and Liu, S., “Analytical Inverse Kinematics for Franka Emika Panda - A Geometrical Solver for 7-DOF Manipulators with Unconventional Design,” In: 2021 9th International Conference on Control, Mechatronics and Automation, ICCMA, (2021) pp.194199. doi: 10.1109/ICCMA54375.2021.9646185.CrossRefGoogle Scholar
Franka Emika GmbH. Franka Emika Robot’s Instruction Handbook (Munich, 2018).Google Scholar
Togai, M., “An application of the singular value decomposition to manipulability and sensitivity of industrial robots*,” SIAM J Algeb Discr Meth 7(2), 315320 (1986). doi: 10.1137/0607034.CrossRefGoogle Scholar
Yoshikawa, T., “Manipulability of robotic mechanisms, “Int J Robot Res 4(2), 39 (1985). doi: 10.1177/027836498500400201.CrossRefGoogle Scholar
Gilbert, E. G., Johnson, D. W. and Keerthi, S. S., “A fast procedure for computing the distance between complex objects in three-dimensional space,” IEEE J Robot Autom 4(2), 193203 (1988).CrossRefGoogle Scholar
Pitchay, S. A. and Shorman, S., “Significance of parameters in genetic algorithm, the strengths, its limitationsand challenges in image recovery,” J Eng Appl Sci 10(2) (2015). Available: https://www.arpnjournals.com/jeas/research_papers/rp_2015/jeas_0215_1494.pdf.Google Scholar
Pamanes, G. J. A. and Zeghloul, S., “Optimal Placement of Robotic Manipulators using Multiple Kinematic Criteria,” In: IEEE Intemational Conference an Robotics and Automation, (1991) pp. 933938.Google Scholar