Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-25T05:17:35.141Z Has data issue: false hasContentIssue false

A reconfigurable modular robotic endoluminal surgical system: vision and preliminary results

Published online by Cambridge University Press:  10 December 2009

Kanako Harada*
Affiliation:
CRIM Lab, Scuola Superiore Sant'Anna, Pisa 56025, Italy
Denny Oetomo
Affiliation:
Department of Mechanical Engineering, University of Melbourne, Victoria 3010, Australia Project COPRIN, INRIA Sophia-Antipolis FR-06902, France
Ekawahyu Susilo
Affiliation:
CRIM Lab, Scuola Superiore Sant'Anna, Pisa 56025, Italy The Italian Institute of Technology (IIT), Genova 16163, Italy
Arianna Menciassi
Affiliation:
CRIM Lab, Scuola Superiore Sant'Anna, Pisa 56025, Italy The Italian Institute of Technology (IIT), Genova 16163, Italy
David Daney
Affiliation:
Project COPRIN, INRIA Sophia-Antipolis FR-06902, France
Jean-Pierre Merlet
Affiliation:
Project COPRIN, INRIA Sophia-Antipolis FR-06902, France
Paolo Dario
Affiliation:
CRIM Lab, Scuola Superiore Sant'Anna, Pisa 56025, Italy
*
*Corresponding author. E-mail: [email protected]

Summary

Miniaturized surgical devices are promising for the future development of minimally invasive and endoluminal surgery. However, the dexterity and therapeutic functions of these devices are limited. In this paper, a reconfigurable modular robotic system is proposed to perform screening and interventions in the gastrointestinal tract. In the proposed system, millimeter-sized robotic modules are ingested and tasked to assemble into an articulated mechanism in the stomach cavity. The modules are assembled according to the target location to perform precise intervention. Based on this concept, a preliminary report is presented covering the robotic schemes for the endoluminal reconfigurable platform, the design with structural functions, the control strategy, and the interval-based constraint satisfaction algorithm to determine the suitable topologies of the reconfigurable robot for the given task.

Type
Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Cuschieri, A., “Laparoscopic surgery: Current status, issues and future developments,” Surgeon 3 (3), 125138 (Jun. 2005).CrossRefGoogle ScholarPubMed
2. Moglia, A., Menciassi, A., Schurr, M. and Dario, P., “Wireless capsule endoscopy: From diagnostic devices to multipurpose robotic systems,” Biomed. Microdevices 9, 235243 (2007).CrossRefGoogle ScholarPubMed
3. Quirini, M., Menciassi, A., Scapellato, S., Stefanini, C. and Dario, P., “Design and fabrication of a motor legged capsule for the active exploration of the gastrointestinal tract,” IEEE/ASME Trans. Mechatron. 13, 169179 (2008).CrossRefGoogle Scholar
4. Phee, L., Accoto, D., Menciassi, A., Stefanini, C., Carrozza, M. and Dario, P., “Analysis and development of locomotion devices for the gastrointestinal tract,” IEEE Trans. Biomed. Eng. 49, 613616 (2002).CrossRefGoogle ScholarPubMed
5. Sendoh, M., Ishiyama, K. and Arai, K., “Fabrication of magnetic actuator for use in a capsule endoscope,” IEEE Trans. Magn. 39 (5), 32323234 (2003).CrossRefGoogle Scholar
6. Ng Pak, N., Webster, R. III, Menciassi, A. and Dario, P., “Electrolytic Silicone Bourdon Tube Microactuator for Reconfigurable Surgical Robot,” Proceedings IEEE International Conference Robotics and Automation, (2007) pp. 3371–3376.Google Scholar
7. Dario, P., Carrozza, M., Stefanini, C. and D'Attanasio, S., “A mobile microrobot actuated by a new electromagnetic wobble micromotor,” IEEE/ASME Trans. Mechatron. 3 (1), 916 (1998).CrossRefGoogle Scholar
8. Park, S.-K., Koo, K.-I., Bang, S.-M., Park, J.-Y., Song, S.-Y. and Cho, D.-G., “A novel microactuator for microbiopsy in capsular endoscopes,” J. Micromech. Microeng. 18 (2), 25 032–0 (2008).CrossRefGoogle Scholar
9. Lehman, A., Rentschler, M., Farritor, S. and Oleynikov, D., “The current state of miniature in vivo laparoscopic robotics,” J. Robot. Surg. 1, 4549 (2007).CrossRefGoogle ScholarPubMed
10. Giday, S., Kantsevoy, S. and Kalloo, A., “Principle and history of natural orifice translumenal endoscopic surgery (notes),” Minim. Invasive Ther. Allied Technol. 15 (6), 373377 (2006).CrossRefGoogle ScholarPubMed
11. “The ares (assembling reconfigurable endoluminal surgical system),” Project Website http://www.ares-nest.org, 2006.Google Scholar
12. Yim, M., Shen, W., Salemi, B., Rus, D., Moll, M., Lipson, H., Klavins, E. and Chirikjian, G., “Modular self-reconfigurable robot systems [Grand Challenges of Robotics],” IEEE Robot. Autom. Mag. 14 (1), 865872 (Mar. 2007).CrossRefGoogle Scholar
13. Murata, S. and Kurokawa, H., “Self-reconfigurable robots,” IEEE Robot. Autom. Mag. 71–78 (Mar. 2007).CrossRefGoogle Scholar
14. Yoshida, E., Murata, S., Kokaji, S., Tomita, K. and Kurokawa, H., “Micro self- reconfigurable modular robot using shape memory alloy,” J. Robot. Mechatron. 13 (2), 212219 (2001).CrossRefGoogle Scholar
15. World Health Organisation, “Fact sheet n.297,” Online: http://www.who.int/mediacenter/factsheets/fs297, 2006.Google Scholar
16. Pesic, M., Karanikolic, A., Djordjevic, N., Katic, V., Rancic, Z., Radojkovic, M., Ignjatovic, N. and Pesic, I., “The importance of primary gastric cancer location in 5-year survival rate,” Archive Oncol. 12, 5153 (2004).Google Scholar
17. Henry, J., O'Sullivan, G. and Pandit, A., “Using computed tomography scans to develop an ex-vivo gastric model,” World J. Gastroenterol. 13 (9), 13721377 (Mar. 2007).CrossRefGoogle ScholarPubMed
18. Harada, K., Susilo, E., Ng Pak, N., Menciassi, A. and Dario, P., “Design of a Bending Module for Assembling Reconfigurable Endoluminal Surgical System,’ Proceedings the 6th International Conference International Society of Gerontechnology (ISG'08), Pisa, Italy (Jun. 4–7, 2008) pp. ID–186.Google Scholar
19. Nagy, Z., Oung, R., Abbott, J. J. and Nelson, B. J., “Experimental Investigation of Magnetic Self-Assembly for Swallowable Modular Robots,” Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis, Missouri (Sep. 22–26, 2008) pp. 19151920.Google Scholar
20. Marescaux, J., Leroy, J., Gagner, M., Rubino, F., Mutter, D., Vix, M., Butner, S. and Smith, M. K., “Transatlantic robot-assisted telesurgery,” Nature 413, 379380 (2001).CrossRefGoogle ScholarPubMed
21. Hapenciuc, A., Catalin, V. and Svasta, P., “Sensorless Brushless Motor Controller with N-MOS Technology,’ International Spring Seminar on Electronics Technology (ISSE), (2007) pp. 477–481.Google Scholar
22. Shao, J., “A novel microcontroller-based sensorless brushless DC (BLDC) motor drive for automotive applications,” IEEE Trans. Indus. Appl. 39 (6), 17341740 (Nov. 2003).CrossRefGoogle Scholar
23. Shao, J., “An improved microcontroller-based sensorless brushless DC (BLDC) motor drive for automotive fuel pump,” IEEE Indus. Appl. Soc. (IEEE-IAS), 2512–2517 (2005).Google Scholar
24. Susilo, E., Valdastri, P., Menciassi, A. and Dario, P., “A miniaturized wireless control platform for robotic capsular endoscopy using advanced pseudokernel approach,” accepted to Sens. Actuators A Phys. 156 (1), 4958 (2009).CrossRefGoogle Scholar
25. Shibata, K., Nagato, T., Tsuji, T. and Koshiji, K., “Energy transmission transformer for a wireless capsule endoscope: Analysis of specific absorption rate and current density in biological tissue,” IEEE Trans. Biomed. Eng. 55 (7), 18641871 (Jul. 2008).CrossRefGoogle Scholar
26. Moore, R., Interval Analysis (Prentice-Hall, Englewood Cliffs, New Jersey, 1966).Google Scholar
27. Hansen, E. and Walster, G., Global Optimization Using Interval Analysis, 2nd ed. (Marcel Dekker, New York, 2004).Google Scholar
28. Benhamou, F., Goualard, F. and Granvilliers, L., “Revising Hull and Box Consistency,” Proceedings of the International Conference on Logic Programming, Las Cruces, USA (1999) pp. 230244.Google Scholar
29. Collavizza, M., Delobe, F. and Rueher, M., “Comparing partial consistencies,” Reliable Comput. 5, 116 (1999).CrossRefGoogle Scholar
30. Lhomme, O., “Consistency Techniques for Numeric CSPs,” Proceedings of International Joint Conferences on Artificial Intelligence (IJCAI), Chambery, France (Aug. 1993) pp. 232238.Google Scholar
31. Neumaier, A., Interval Methods for Systems of Equations (Cambridge University Press, London, 1990).Google Scholar
32. Oetomo, D., Daney, D. and Merlet, J.-P., “Design strategy of serial manipulators with certified constraint satisfaction,” IEEE Trans. Robot. 25 (1), 111 (Feb. 2009).CrossRefGoogle Scholar
33. Nagy, Z., Abbott, J. and Nelson, B., “The Magnetic Self-Aligning Hermaphroditic Connector: A Scalable Approach for Modular Microrobotics,” Proceedings IEEE/ASME International Conference Advanced Intelligent Machatronics, Zurich, Switzerland (2007) pp. 16.Google Scholar
34. Menciassi, A., Valdastri, P., Harada, K. and Dario, P., “Single and Multiple Robotic Capsules for Endoluminal Diagnosis and Surgery,” Proceedings of IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, (Oct. 19–22, 2008) pp. 238–243.CrossRefGoogle Scholar