Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-13T00:55:53.179Z Has data issue: false hasContentIssue false

Potential field-based dual heuristic programming for path-following and obstacle avoidance of wheeled mobile robots

Published online by Cambridge University Press:  27 April 2023

Yaoqian Peng
Affiliation:
College of Intelligence Science and Technology, National University of Defense Technology, Changsha, 410073, China
Xinglong Zhang*
Affiliation:
College of Intelligence Science and Technology, National University of Defense Technology, Changsha, 410073, China
Haibin Xie*
Affiliation:
College of Intelligence Science and Technology, National University of Defense Technology, Changsha, 410073, China
Xin Xu
Affiliation:
College of Intelligence Science and Technology, National University of Defense Technology, Changsha, 410073, China
*
*Corresponding authors. E-mail: [email protected]; [email protected]
*Corresponding authors. E-mail: [email protected]; [email protected]

Abstract

Path-following control of wheeled mobile robots has been a crucial research topic in robotic control theory and applications. In path-following control with obstacles, the path-following control and collision avoidance goals might be conflicting, making it challenging to obtain near-optimal solutions for path-following control and obstacle avoidance with low tracking error and input energy consumption. To address this problem, we propose a potential field-based dual heuristic programming (P-DHP) algorithm with an actor–critic (AC) structure for path-following control of mobile robots with obstacle avoidance. In the proposed P-DHP, the path-following control and collision avoidance problems are decoupled into two ones to resolve the control conflict. Firstly, a neural network-based AC is constructed to approximate the near-optimal path-following control policy in a no-obstacle environment. Then, with the trained path-following control policy fixed, a potential field-based control policy structure is constructed by another AC network to generate opposite control forces as the robot moves toward the obstacle, which can guarantee the robot’s control safety and reduce the tracking error and input energy consumption in obstacle avoidance. The simulated and experimental results show that P-DHP can realize near-optimal path-following control with the satisfaction of safety constraints and outperforms state-of-the-art approaches in control performance.

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Nascimento, T. P., Dórea, C. E. and Gonçalves, L. M. G., “Nonholonomic mobile robots’ trajectory tracking model predictive control: A survey,” Robotica. 36(5), 676696 (2018).10.1017/S0263574717000637CrossRefGoogle Scholar
Li, Z., Zhao, K., Zhang, L., Wu, X., Zhang, T., Li, Q., Li, X. and Su, C., “Human-in-the-loop control of a wearable lower limb exoskeleton for stable dynamic walking,” IEEE/ASME Trans. Mechatron. 26(5), 27002711 (2021).10.1109/TMECH.2020.3044289CrossRefGoogle Scholar
Su, H., Hu, Y., Karimi, H. R., Knoll, A., Ferrigno, G. and De Momi, E., “Improved recurrent neural network-based manipulator control with remote center of motion constraints: Experimental results,” Neural Netw. 131, 291299 (2020).10.1016/j.neunet.2020.07.033CrossRefGoogle ScholarPubMed
Li, Z., Ren, Z., Zhao, K., Deng, C. and Feng, Y., “Human-cooperative control design of a walking exoskeleton for body weight support,” IEEE Trans. Ind. Inform. 16(5), 29852996 (2020).10.1109/TII.2019.2900121CrossRefGoogle Scholar
Chen, Z., Liu, Y., He, W., Qiao, H. and Ji, H., “Adaptive-neural-network-based trajectory tracking control for a nonholonomic wheeled mobile robot with velocity constraints,” IEEE Trans. Ind. Electron. 68(6), 50575067 (2021).10.1109/TIE.2020.2989711CrossRefGoogle Scholar
Wiig, M. S., Pettersen, K. Y. and Krogstad, T. R., “Collision avoidance for underactuated marine vehicles using the constant avoidance angle algorithm,” IEEE Trans. Control. Syst. Technol. 28(3), 951966 (2019).10.1109/TCST.2019.2903451CrossRefGoogle Scholar
Alonso-Mora, J., Beardsley, P. and Siegwart, R., “Cooperative collision avoidance for nonholonomic robots,” IEEE Trans. Robot. 34(2), 404420 (2018).10.1109/TRO.2018.2793890CrossRefGoogle Scholar
Hoy, M., Matveev, A. S. and Al, A. V. S., “Algorithms for collision-free navigation of mobile robots in complex cluttered environments: A survey,” Robotica. 33(3), 463497 (2015).10.1017/S0263574714000289CrossRefGoogle Scholar
Khatib, Real-time obstacle avoidance for manipulators and mobile robots,” Int. J. Robot. Res. 5(1), 500505 (1986).Google Scholar
Funke, J., Brown, M., Erlien, S. M. and Gerdes, J. C., “Collision avoidance and stabilization for autonomous vehicles in emergency scenarios,” IEEE Trans. Control. Syst. Technol. 25(4), 12041216 (2017).10.1109/TCST.2016.2599783CrossRefGoogle Scholar
Hagen, I. B., Kufoalor, D. K. M., Brekke, E. F. and T.A.Johansen, M., “MPC-Based Collision Avoidance Strategy for Existing Marine Vessel Guidance Systems,” In: 2018 IEEE International Conference on Robotics and Automation (ICRA) (IEEE, 2018) pp. 76187623.10.1109/ICRA.2018.8463182CrossRefGoogle Scholar
Brito, B., Floor, B., Ferranti, L. and Alonso-Mora, J., “Model predictive contouring control for collision avoidance in unstructured dynamic environments,” IEEE Robot. Autom. Lett. 4(4), 44594466 (2019).10.1109/LRA.2019.2929976CrossRefGoogle Scholar
Leica, P., Herrera, M., Rosales, C., Roberti, F., Toibero, J. and Carelli, R., “Dynamic Obstacle Avoidance Based on Time-Variation of a Potential Field for Robots Formations,” In: 2017 IEEE Second Ecuador Technical Chapters Meeting (ETCM) (IEEE, 2017) pp. 16.Google Scholar
Sudhakara, P., Ganapathy, V., Priyadharshini, B. and Sundaran, K., “Obstacle avoidance and navigation planning of a wheeled mobile robot using amended artificial potential field method,” Proc. Comput. Sci. 133, 9981004 (2018).10.1016/j.procs.2018.07.076CrossRefGoogle Scholar
Hu, B., Guan, Z.-H., Lewis, F. L. and Chen, C. P., “Adaptive tracking control of cooperative robot manipulators with markovian switched couplings,” IEEE Trans. Ind. Electron. 68(3), 24272436 (2021).CrossRefGoogle Scholar
Dong, H., Zhao, X. and Yang, H., “Reinforcement learning-based approximate optimal control for attitude reorientation under state constraints,” IEEE Trans. Control. Syst. Technol. 29(4), 16641673 (2020).10.1109/TCST.2020.3007401CrossRefGoogle Scholar
Zhang, Z., Chen, S., Zhu, X. and Z.Yan, T., “Two hybrid end-effector posture-maintaining and obstacle-limits avoidance schemes for redundant robot manipulators,” IEEE Trans. Ind. Inform. 16(2), 754763 (2020).CrossRefGoogle Scholar
Deptula, P., Chen, H.-Y., Licitra, R. A., Rosenfeld, J. A. and Dixon, W. E., “Approximate optimal motion planning to avoid unknown moving avoidance regions,” IEEE Trans. Robot. 36(2), 414430 (2020).10.1109/TRO.2019.2955321CrossRefGoogle Scholar
Zhang, X., Peng, Y., Luo, B., Pan, W., Xu, X. and H.Xie, M., “Model-Based Safe Reinforcement Learning with Time-Varying State and Control Constraints: An Application to Intelligent Vehicles,” arXiv preprint, arXiv:2112.11217 (2021).Google Scholar
Dong, Y., Tang, X. and Yuan, Y., “Principled reward shaping for reinforcement learning via Lyapunov stability theory,” Neurocomputing. 393, 8390 (2020).10.1016/j.neucom.2020.02.008CrossRefGoogle Scholar
Ohnishi, M., Wang, L., Notomista, G. and Egerstedt, M., “Barrier-certified adaptive reinforcement learning with applications to brushbot navigation,” IEEE Trans. Robot. 35(5), 11861205 (2019).10.1109/TRO.2019.2920206CrossRefGoogle Scholar
Wen, M. and Topcu, U., “Constrained cross-entropy method for safe reinforcement learning,” IEEE Trans. Autom. Control 66(7), 31233137 (2021).10.1109/TAC.2020.3015931CrossRefGoogle Scholar
Cohen, M. H. and Belta, C., “Approximate Optimal Control for Safety-Critical Systems with Control Barrier Functions,” In: 2020 59th IEEE Conference on Decision and Control (CDC) (IEEE, 2020) pp. 20622067.10.1109/CDC42340.2020.9303896CrossRefGoogle Scholar
Yang, Y. Y., He, W., Vamvoudakis, K. G., Modares, H. M. and Wunsch, D. C., “Safety-Aware Reinforcement Learning Framework with an Actor-Critic-Barrier Structure,” In: 2019 American Control Conference (ACC) (IEEE, 2019) pp. 23522358.CrossRefGoogle Scholar
Ames, A., Xu, X., Grizzle, J. and P.Tabuada, C., “Control barrier function based quadratic programs for safety critical systems,” IEEE Robot. Automat. Lett. 62(8), 38613876 (2017).Google Scholar
Luo, B., Liu, D., Huang, T. and Liu, J., “Output tracking control based on adaptive dynamic programming with multistep policy evaluation,” IEEE Trans. Syst. Man Cybernet. Syst. 49(10), 21552165 (2019).10.1109/TSMC.2017.2771516CrossRefGoogle Scholar
Perkins, T. J. and Barto, A. G., “Lyapunov design for safe reinforcement learning,” J. Mach. Learn. Res. 3(12), 803832 (2002).Google Scholar
Castillo-Lopez, M., Ludivig, P., Sajadi-Alamdari, S. A., Sanchez-Lopez, J. L., Olivares-Mendez, M. A. and Voos, H., “A real-time approach for chance-constrained motion planning with dynamic obstacles,” IEEE Robot. Automat. Lett. 5(2), 36203625 (2020).CrossRefGoogle Scholar
Zhu, H. and Alonso-Mora, J., “Chance-constrained collision avoidance for mavs in dynamic environments,” IEEE Robot. Automat. Lett. 4(2), 776783 (2019).CrossRefGoogle Scholar
Andersson, J. A. E., Gillis, J., Horn, G., Rawlings, J. B. and Diehl, M., “CasADi: A software framework for nonlinear optimization and optimal control,” Math. Program. Comput. 1(1), 136 (2019).CrossRefGoogle Scholar