Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-11T12:34:04.769Z Has data issue: false hasContentIssue false

Parallel processing in machine vision

Published online by Cambridge University Press:  09 March 2009

Stanley R. Sternberg
Affiliation:
Machine Vision International, Ann Arbor, Michigan 48104 (USA)

Summary

Machine vision systems incorporating highly parallel processor architectures are reviewed. A new processor architecture, the image flow computer, is presented in detail. An interactive image processing programming language based on mathematical morphology is then presented. A detailed example of the use of the system for the inspection of a particular industrial part concludes the presentation.

Type
Article
Copyright
Copyright © Cambridge University Press 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Neumann, J. von, Theory of Self-Reproducing Automata (Burks, A., editor) S. M. University of Illinois Press, Urbana, 1966.Google Scholar
2.Ulam, S.M., “On Some New Possibilities in the Organization and use of Computing Machines” IBM Research Reports No. RC68 (05 1957).Google Scholar
3.Unger, S.H., “A Computer Oriented to Spatial ProblemsProc IRE 46, 17441750 (1958).CrossRefGoogle Scholar
4.Hubel, D.H., and Wiesel, T.N., “Receptive Fields, Binocular Interaction and Functional Architecture in the Cat's Visual Cortex” J. Physiol. No. 160, 106154CrossRefGoogle Scholar
5.Rosenfeld, A., “Parallel Image Processing in Cellular ArraysIEEE Computer 16, No. 1 (01, 1983).CrossRefGoogle Scholar
6.Slotnick, D.L., Borck, W.C. and McReynolds, R.C., “The SOLOMON Computer” Proc. Western Joint Comp. Conf. 87107 (1982).Google Scholar
7.Klein, J.C. and Serra, J., “The Texture AnalyserJ. Microscopy 95, part 2, 349356 (04 1973).CrossRefGoogle Scholar
8.Preston, K. Jr, “Machine Techniques for Automatic Identification of the Binucleate Lymphocyte” Proc. Fourth Int'l Conf. Medical Electronics, Washington D.C. (01 1961).Google Scholar
9.Golay, M.J.E., “Hexagonal Parallel Pattern TransformationIEEE Transactions on Computing C-18, 733740 (1969).CrossRefGoogle Scholar
10.Graham, D. and Norgren, P.E., “The diff3 Analyzer: A Parallel/Serial Golay Logic Processor” Real Time Medical Image Processing (Ohoe, M., Preston, K. Jr and Rosenfeld, A., eds.) (Plenum Press, New York, 1980).Google Scholar
11.Sternberg, S.R., “Parallel Architectures for Image Processing” PROC. IEEE COMPSAC, Chicago (1979).Google Scholar
12.Lougheed, R.M., Mccubbrey, D.L. and Sternberg, S.R., “Cytocomputers: Architectures for Parallel Image Processing” Proc. Workshop Picture Data Description and Management 281286 (08, 1980).Google Scholar
13.Sternberg, S.R., “Biomedical Image ProcessingIEEE Computer Magazine 16, No. 1 (01 1983).CrossRefGoogle Scholar
14.Kung, H.T. and Picard, R.L., “Hardware Pipelines for MultDimensional Convolution and Resampling,” Proc. Workshop Computer Architectures PAIDM 273278 (1981).Google Scholar
15.K.E., BatcherDesign of a Massively Parallel ProcessorIEEE Trans. Comp. 28, 836840 (1980).Google Scholar
16.Duff, M.J.B., Watson, D.M., Fountain, T.M. and Shaw, G.K., “A Cellular Logic Array for Image ProcessingPattern Recognition 5, 229247 (1973).CrossRefGoogle Scholar
17.Matheron, G., Random Sets and Integral Geometry (John Wiley, New York, 1975).Google Scholar
18.Minkowski, H., “Volumen and OberflacheMath. Ann. 57, 447495 (1903).CrossRefGoogle Scholar
19.Serra, J., “Buts et Realisation de L'analyseur de Textures” Revue de l'Industrie Minerale (1967).Google Scholar
20.Serra, J., Image Analysis and Mathematical Morphology (Academic Press, London, 1982).Google Scholar
21.BLIX Reference Manual, version 1.0. (Machine Vision International, Corp., New York, 07, 1983).Google Scholar