Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-28T01:58:13.109Z Has data issue: false hasContentIssue false

A Novel Generation of Ergonomic Upper-Limb Wearable Robots: Design Challenges and Solutions

Published online by Cambridge University Press:  26 December 2018

Giorgia Ercolini*
Affiliation:
The BioRobotics Institute, Scuola Superiore Sant’Anna, Pisa, Italy E-mails: [email protected], [email protected], [email protected], [email protected]
Emilio Trigili
Affiliation:
The BioRobotics Institute, Scuola Superiore Sant’Anna, Pisa, Italy E-mails: [email protected], [email protected], [email protected], [email protected]
Andrea Baldoni
Affiliation:
The BioRobotics Institute, Scuola Superiore Sant’Anna, Pisa, Italy E-mails: [email protected], [email protected], [email protected], [email protected]
Simona Crea
Affiliation:
The BioRobotics Institute, Scuola Superiore Sant’Anna, Pisa, Italy E-mails: [email protected], [email protected], [email protected], [email protected] IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy
Nicola Vitiello
Affiliation:
The BioRobotics Institute, Scuola Superiore Sant’Anna, Pisa, Italy E-mails: [email protected], [email protected], [email protected], [email protected] IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy
*
*Corresponding author. E-mail: [email protected]

Summary

In this work we present NEUROExos, a novel generation of upper-limb exoskeletons developed in recent years at The BioRobotics Institute of Scuola Superiore Sant’Anna (Italy). Specifically, we present our attempts to progressively (i) improve the ergonomics and safety (ii) reduce the encumbrance and weight, and (iii) develop more intuitive human–robot cognitive interfaces. Our latest prototype, described here for the first time, extends the field of application to assistance in activities of daily living, thanks to its compact and portable design. The experimental studies carried out on these devices are summarized, and a perspective on future developments is presented.

Type
Articles
Copyright
© Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Giorgia Ercolini and Emilio Trigili have contributed equally to this work.

References

Poli, P., Morone, G., Rosati, G. and Masiero, S., “Robotic technologies and rehabilitation: New tools for stroke patients,” Biomed. Res. Int. 2013, Art. ID 153872 (2013).CrossRefGoogle Scholar
Volpe, B. T., Lynch, D., Rykman-Berland, A., Ferraro, M., Galgano, M., Hogan, N. and Krebs, H. I., “Intensive sensorimotor arm training mediated by therapist or robot improves hemiparesis in patients with chronic stroke,” Neurorehabil. Neural Repair 22(3), 305310 (2008).CrossRefGoogle ScholarPubMed
Lum, P. S., Burgar, C. G., Shor, P. C., Majmundar, M. and Van der Loos, M., “Robot-assisted movement training compared with conventional therapy techniques for the rehabilitation of upper-limb motor function after stroke,” Arch. Phys. Med. Rehabil. 83(7), 952959 (2002).CrossRefGoogle ScholarPubMed
Hogan, N., Krebs, H. I., Charnnarong, J., Srikrishna, P. and Sharon, A., “MIT-MANUS: A workstation for manual therapy and training. I,” Proceedings, IEEE International Workshop on Robot and Human Communication, 1992, Tokyo, Japan (1992) pp. 161165.CrossRefGoogle Scholar
Coote, S., Murphy, B., Harwin, W. and Stokes, E., “The effect of the GENTLE/s robot-mediated therapy system on arm function after stroke,” Clin. Rehabil. 22(5), 395405 (2008).CrossRefGoogle ScholarPubMed
Lum, P. S., Burgar, C. G., Kenney, D. E. and Van der Loos, M., “Quantification of force abnormalities during passive and active-assisted upper-limb reaching movements in post-stroke hemiparesis,” IEEE Trans. Biomed. Eng. 46(6), 652662 (1999).CrossRefGoogle ScholarPubMed
Perry, J. C., Rosen, J. and Burns, S., “Upper-limb powered exoskeleton design,” IEEE/ASME Trans. Mechatron. 12(4), 408417 (2007).CrossRefGoogle Scholar
Stienen, A. H. A., Hekman, E. E. G., Van der Helm, F. C. T. and Van der Kooij, H., “Self-aligning exoskeleton axes through decoupling of joint rotations and translations,” IEEE Trans. Robot. 25(3), 628633 (2009).CrossRefGoogle Scholar
Proietti, T., Crocher, V., Roby-Brami, A. and Jarrasse, N., “Upper-limb robotic exoskeletons for neurorehabilitation: A review on control strategies,” IEEE Rev. Biomed. Eng. 9, 414 (2016).CrossRefGoogle ScholarPubMed
Ball, S. J., Brown, I. E. and Scott, S. H., “MEDARM: A rehabilitation robot with 5DOF at the shoulder complex,” 2007 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Zurich, Switzerland (2007) pp. 16.Google Scholar
Cui, X., Chen, W., Jin, X. and Agrawal, S. K., “Design of a 7-DOF cable-driven arm exoskeleton (CAREX-7) and a controller for dexterous motion training or assistance,” IEEE/ASME Trans. Mechatron. 22(1), 161172 (2016).CrossRefGoogle Scholar
Otten, A., Voort, H. C., Stienen, A. H. A., Aarts, R. G. K. M., Van Asseldonk, E. H. F. and Van der Kooij, H., “Limpact: A hydraulically powered self-aligning upper limb exoskeleton,” IEEE/ASME Trans. Mechatron. 20(5), 22852298 (2015).CrossRefGoogle Scholar
Stienen, A. H. A., Hekman, E. E. G., Van der Helm, F. C. T., Prange, G. B., Jannink, M. J. A., Aalsma, A. M. M. and Van der Kooij, H., “Dampace: Dynamic force-coordination trainer for the upper extremities,” IEEE 10th International Conference on Rehabilitation Robotics, 2007, Noordwijk, Netherlands (2007) pp. 820826.CrossRefGoogle Scholar
Kim, B. and Deshpande, A. D., “An upper-body rehabilitation exoskeleton Harmony with an anatomical shoulder mechanism: Design, modeling, control, and performance evaluation,” Int. J. Rob. Res. 36(4), 414435 (2017).CrossRefGoogle Scholar
Pirondini, E., Coscia, M., Marcheschi, S., Roas, G., Salsedo, F., Frisoli, A., Bergamasco, M. and Micera, S., “Evaluation of the effects of the Arm Light Exoskeleton on movement execution and muscle activities: A pilot study on healthy subjects,” J. Neuroeng. Rehabil. 13(1), 9 (2016).CrossRefGoogle ScholarPubMed
Heinzmann, J. and Zelinsky, A., “Quantitative safety guarantees for physical human-robot interaction,” Int. J. Rob. Res. 22(7–8), 479504 (2003).CrossRefGoogle Scholar
Pratt, G. A. and Williamson, M. M., “Series elastic actuators,” 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems 95Human Robot Interaction and Cooperative Robots” Proceedings, Pittsburgh, PA (1995) pp. 399406.Google Scholar
Morales, R., Badesa, F. J., Garcia-Aracil, N., Sabater, J. M. and Perez-Vidal, C., “Pneumatic robotic systems for upper limb rehabilitation,” Med. Biol. Eng. Comput. 49(10), 11451156 (2011).CrossRefGoogle ScholarPubMed
Sanchez, R. J., Wolbrecht, E., Smith, R., Liu, J., Rao, S., Cramer, S., Rahman, T., Bobrow, J. E. and Reinkensmeyer, D. J., “A pneumatic robot for re-training arm movement after stroke: Rationale and mechanical design,” IEEE 9th International Conference on Rehabilitation Robotics, Proceedings of the 2005, Chicago, IL (2005) pp. 500504.Google Scholar
T. G. Sugar, J. He, Koeneman, E. J., Koeneman, J. B., Herman, R., Huang, H., Schultz, R. S., Herring, D. E., Wanberg, J., Balasubramanian, S., Swensons, P. and Ward, J. A., “Design and control of RUPERT: A device for robotic upper extremity repetitive therapy,” IEEE Trans. Neural. Syst. Rehabil. Eng. 15(3), 336346 (2007).Google Scholar
O’Neill, C. T., Phipps, N. S., Cappello, L., Paganoni, S. and Walsh, C. J., “A soft wearable robot for the shoulder: Design, characterization, and preliminary testing,” 2017 International Conference on Rehabilitation Robotics, London, UK (2017) pp. 16721678.CrossRefGoogle Scholar
Xiloyannis, M., Cappello, L., Binh, K. D., Antuvan, C. W. and Masia, L., “Preliminary design and control of a soft exosuit for assisting elbow movements and hand grasping in activities of daily living,” J. Rehabil. Assist. Technol. Eng. 4, 115 (2017).Google ScholarPubMed
Lenzi, T., Vitiello, N., De Rossi, S. M. M., Roccella, S., Vecchi, F. and Carrozza, M. C., “NEUROExos: A variable impedance powered elbow exoskeleton,” 2011 IEEE International Conference on Robotics and Automation (ICRA), Shanghai, China (2011) pp. 14191426.CrossRefGoogle Scholar
Cempini, M., Giovacchini, F., Vitiello, N., Cortese, M., Moisé, M., Posteraro, F. and Carrozza, M. C., “NEUROExos: A powered elbow orthosis for post-stroke early neurorehabilitation,” 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Osaka, Japan (2013) pp. 342345.CrossRefGoogle Scholar
Crea, S., Cempini, M., Moisé, M., Baldoni, A., Trigili, E., Marconi, D., Cortese, M., Giovacchini, F., Posteraro, F. and Vitiello, N., “A novel shoulder-elbow exoskeleton with series elastic actuators,” 2016 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob), Singapore, Singapore (2016) pp. 12481253.CrossRefGoogle Scholar
Bottlang, M., Madey, S. M., Steyers, C. M., Marsh, J. L. and Brown, T. D., “Assessment of elbow joint kinematics in passive motion by electromagnetic motion tracking,” J. Orthop. Res. 18(2), 195202 (2000).CrossRefGoogle ScholarPubMed
Vitiello, N., Lenzi, T., Roccella, S., De Rossi, S. M. M., Cattin, E., Giovacchini, F., Vecchi, F. and Carrozza, M. C., “NEUROExos: A powered elbow exoskeleton for physical rehabilitation,” IEEE Trans. Robot. 29(1), 220235 (2013).CrossRefGoogle Scholar
Lenzi, T., Vitiello, N., De Rossi, S. M. M., Persichetti, A., Giovacchini, F., Roccella, S., Vecchi, S. and Carrozza, M. C., “Measuring human-robot interaction on wearable robots: A distributed approach,” Mechatronics 21(6), 11231131 (2011).CrossRefGoogle Scholar
Calvo Lobo, C., Romero Morales, C., Rodríguez Sanz, D., Sanz Corbalán, I., Sánchez Romero, E. A., Fernández Carnero, J. and López López, D., “Comparison of hand grip strength and upper limb pressure pain threshold between older adults with or without non-specific shoulder pain,” Peer J. 5, e2995 (2017).CrossRefGoogle ScholarPubMed
Harryman, D. T., Sidles, J. A., Clark, J. M., McQuade, K. J., Gibb, T. D. and Matsen, F. A., “Translation of the humeral head on the glenoid with passive glenohumeral motion,” J. Bone Joint Surg. Am. 72(9), 13341343 (1990).CrossRefGoogle ScholarPubMed
Nef, T. and Riener, R., “Shoulder actuation mechanism for arm rehabilitation,” 2nd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics, Scottsdale, AZ (2008).Google Scholar
Vitiello, N., Cempini, M., Crea, S., Giovacchini, F., Cortese, M., Moisé, M., Posteraro, F. and Carrozza, M. C., “Functional design of a powered elbow orthosis toward its clinical employment,” IEEE/ASME Trans. Mechatron. 21(4), 18801891 (2016).CrossRefGoogle Scholar
Guenzkofer, F., Bubb, H. and Bengler, K., “Maximum elbow joint torques for digital human models,” Int. J. Human Factors Modell. Sim. 3(2), 109132 (2012).CrossRefGoogle Scholar
Crea, S., Cempini, M., Moisé, M., Baldoni, A., Trigili, E., Marconi, D., Cortese, M., Giovacchini, F., Posteraro, F. and Vitiello, N., “Validation of a Gravity Compensation Algorithm for a Shoulder-Elbow Exoskeleton for Neurological Rehabilitation,” In: Converging Clinical and Engineering Research on Neurorehabilitation II (Springer International Publishing, Cham, 2016) pp. 495499.Google Scholar
Ronnse, R., Vitiello, N., Lenzi, T., Van den Kieboom, J., Carrozza, M. C. and Ijspeert, A. J., “Human-robot synchrony: Flexible assistance using adaptive oscillators,” IEEE Trans. Biomed. Eng. 58(4), 10011012 (2011).CrossRefGoogle Scholar
Accogli, A., Grazi, L., Crea, S., Panarese, A., Carpaneto, J., Vitiello, N. and Micera, S., “EMG-based Detection of User’s Intentions for Human-Machine Shared Control of an Assistive Upper-Limb Exoskeleton,” In: Wearable Robotics: Challenges and Trends (Springer International Publishing, Cham, 2016) pp. 181185.Google Scholar
Crea, S., Nann, M., Trigili, E., Cordella, F., Baldoni, A., Badesa, F. J., Catalan, J. M., Zollo, L., Vitiello, N., Aracil, N. G. and Soekadar, S. R., “Feasibility and safety of shared EEG/EOG and vision-guided autonomous whole-arm exoskeleton control to perform activities of daily living,” Sci. Rep. 8(1), 10823 (2018).CrossRefGoogle ScholarPubMed
Crea, S., Cempini, M., Mazzoleni, S., Carrozza, M. C., Posteraro, F. and Vitiello, N., “Phase-II clinical validation of a powered exoskeleton for the treatment of elbow spasticity,” Front. Neurosci. 11, 261270 (2017).CrossRefGoogle ScholarPubMed
Frisoli, A., Borelli, L., Montagner, A., Marcheschi, S., Procopio, C., Salsedo, F., Bergamasco, M., Carboncini, M. C., Tolaini, M. and Rossi, B., “Arm rehabilitation with a robotic exoskeleton in Virtual Reality,” IEEE 10th International Conference on Rehabilitation Robotics, 2007, Noordwijk, Netherlands (2007) pp. 631642.CrossRefGoogle Scholar
Staubli, P., Nef, T., Klamroth-Marganska, V. and Riener, R., “Effects of intensive arm training with the rehabilitation robot ARMin II in chronic stroke patients: Four single-cases,” J. Neuroeng. Rehabil. 6(1), 46 (2009).CrossRefGoogle ScholarPubMed
Barreca, S., Wolf, S. L., Fasoli, S. and Bohannon, R., “Treatment interventions for the paretic upper limb of stroke survivors: A critical review,” Neurorehabil. Neural Repair 17(4), 220226 (2004).CrossRefGoogle Scholar