Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-30T15:02:27.625Z Has data issue: false hasContentIssue false

A Novel Exoskeleton with Fractional Sliding Mode Control for Upper Limb Rehabilitation

Published online by Cambridge University Press:  15 January 2020

Md Rasedul Islam
Affiliation:
Department of Mechanical Engineering, University of Wisconsin–Milwaukee, Wisconsin, WI, USA. E-mails: [email protected]; [email protected]
Mehran Rahmani*
Affiliation:
Department of Mechanical Engineering, University of Wisconsin–Milwaukee, Wisconsin, WI, USA. E-mails: [email protected]; [email protected]
Mohammad Habibur Rahman
Affiliation:
Department of Mechanical/Biomedical Engineering, University of Wisconsin-Milwaukee, Wisconsin, WI, USA. E-mail: [email protected]
*
*Corresponding author. E-mail: [email protected]

Summary

The robotic intervention has great potential in the rehabilitation of post-stroke patients to regain their lost mobility. In this paper, firstly, we present a design of a novel, 7 degree-of-freedom (DOF) upper limb robotic exoskeleton (u-Rob) that features shoulder scapulohumeral rhythm with a wide range of motions (ROM) compared to other existing exoskeletons. An ergonomic shoulder mechanism with two passive DOF was included in the proposed exoskeleton to provide scapulohumeral motion with corresponding full ROM. Also, the joints of u-Rob have more range of motions compared to its existing counterparts. Secondly, we propose a fractional sliding mode control (FSMC) to control u-Rob. Applying the Lyapunov theory to the proposed control algorithm, we showed the stability of it. To control u-Rob, FSMC has shown effectiveness to handle unmodeled dynamics (e.g. friction, disturbance, etc.) in terms of better tracking and chatter compared to traditional SMC.

Type
Articles
Copyright
Copyright © Cambridge University Press 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Stroke Statistics In, (The Internet Stroke Centre 2019).Google Scholar
Benjamin, E. J., Blaha, M. J., Chiuve, S. E., Cushman, M., Das, S. R., Deo, R., de Ferranti, S. D., Floyd, J., Fornage, M., Gillespie, C., Isasi, C. R., Jimenez, M. C., Jordan, L. C., Judd, S. E., Lackland, D., Lichtman, J. H., Lisabeth, L., Liu, S., Longenecker, C. T., Mackey, R. H., Matsushita, K., Mozaffarian, D., Mussolino, M. E., Nasir, K., Neumar, R. W., Palaniappan, L., Pandey, D. K., Thiagarajan, R. R., Reeves, M. J., Ritchey, M., Rodriguez, C. J., Roth, G. A., Rosamond, W. D., Sasson, C., Towfighi, A., Tsao, C. W., Turner, M. B., Virani, S. S., Voeks, J. H., Willey, J. Z., Wilkins, J. T., Wu, J. H., Alger, H. M., Wong, S. S., P. Muntner and On behalf of the American Heart Association Statistics Committee and Stroke Statistics Subcommittee, “Heart disease and stroke statistics-2017 update: A report from the American Heart Association,” Circulation 135(10), e146e603 (2017).CrossRefGoogle Scholar
Rehabilitation Therapy after a Stroke In, (National Stroke Association, 2019).Google Scholar
Poli, P., Morone, G., Rosati, G. and Masiero, S., “Robotic technologies and rehabilitation: New tools for stroke patients’ therapy,” BioMed Res. Int. 2013, 8 (2013).Google Scholar
Bai, S., Christensen, S. and Islam, M. R. U., “An Upper-body Exoskeleton with a Novel Shoulder Mechanism for Assistive Applications,” 2017 IEEE International Conference on Advanced Intelligent Mechatronics (AIM) (2017) pp. 10411046.Google Scholar
Brahmi, B., Saad, M., Luna, C. O., Archambault, P. S. and Rahman, M. H., “Passive and active rehabilitation control of human upper-limb exoskeleton robot with dynamic uncertainties,” Robotica 36(11), 17571779 (2018).CrossRefGoogle Scholar
Carignan, C., Tang, J., Roderick, S. and Naylor, M., “A Configuration-Space Approach to Controlling a Rehabilitation Arm Exoskeleton,” 2007 IEEE 10th International Conference on Rehabilitation Robotics (2007) pp. 179187.Google Scholar
Christensen, S. and Bai, S., A Novel Shoulder Mechanism with a Double Parallelogram Linkage for Upper-Body Exoskeletons (Springer International Publishing, Cham, 2017) pp. 5156.Google Scholar
Cui, X., Chen, W., Jin, X. and Agrawal, S. K., “Design of a 7-DOF Cable-Driven Arm Exoskeleton (CAREX-7) and a controller for dexterous motion training or assistance,” IEEE/ASME Trans. Mechatron. 22(1), 161172 (2017).CrossRefGoogle Scholar
Kiguchi, K., Esaki, R., Tsuruta, T., Watanabe, K. and Fukuda, T., “An exoskeleton system for elbow joint motion rehabilitation,” Proceedings 2003 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM 2003) (2003) vol. 1222, pp. 12281233.Google Scholar
Kiguchi, K. and Hayashi, Y., “An EMG-based control for an upper-limb power-assist exoskeleton robot,” IEE Trans. Syst. Man Cybernetics, Part B (Cybernetics) 42(4), 10641071 (2012).CrossRefGoogle ScholarPubMed
Kiguchi, K., Rahman, M. H., Sasaki, M. and Teramoto, K., “Development of a 3DOF mobile exoskeleton robot for human upper-limb motion assist,” Robot. Auton. Syst. 56(8), 678691 (2008).CrossRefGoogle Scholar
Kim, B. and Deshpande, A. D., “Controls for the Shoulder Mechanism of an Upper-body Exoskeleton for Promoting Scapulohumeral Rhythm,” 2015 IEEE International Conference on Rehabilitation Robotics (ICORR) (2015) pp. 538542.Google Scholar
Kim, B. and Deshpande, A. D., “An upper-body rehabilitation exoskeleton Harmony with an anatomical shoulder mechanism: Design, modeling, control, and performance evaluation,” Int. J. Rob. Res. 36(4), 414435 (2017).CrossRefGoogle Scholar
Liu, L., Shi, Y.-Y. and Xie, L., “A novel multi-dof exoskeleton robot for upper limb rehabilitation,” J. Mech. Med. Biol. 16(08), 1640023 (2016).CrossRefGoogle Scholar
Mahdavian, M., Toudeshki, A. G. and Yousefi-Koma, A., “Design and Fabrication of a 3DoF Upper Limb Exoskeleton,” 2015 3rd RSI International Conference on Robotics and Mechatronics (ICROM) (2015) pp. 342346.Google Scholar
Mihelj, M., Nef, T. and Riener, R., “ARMin II – 7 DoF Rehabilitation Robot: Mechanics and Kinematics,” Proceedings 2007 IEEE International Conference on Robotics and Automation (2007) pp. 41204125.Google Scholar
Nef, T., Guidali, M., Klamroth-Marganska, V. and Riener, R., “ARMin – Exoskeleton Robot for Stroke Rehabilitation,” In: World Congress on Medical Physics and Biomedical Engineering (Dössel, O. and Schlegel, W. C., eds.) September 7–12, 2009, Munich, Germany (Springer Berlin Heidelberg, Berlin, Heidelberg, 2009) pp. 127130.Google Scholar
Nef, T., Guidali, M. and Riener, R., “ARMin III – Arm therapy exoskeleton with an ergonomic shoulder actuation,” Appl. Bionics Biomech. 6(2), (2009) pp. 127142.CrossRefGoogle Scholar
Nef, T., Mihelj, M., Kiefer, G., Perndl, C., Muller, R. and Riener, R., “ARMin – Exoskeleton for Arm Therapy in Stroke Patients,” 2007 IEEE 10th International Conference on Rehabilitation Robotics (2007) pp. 6874.Google Scholar
Nef, T., Mihelj, M. and Riener, R., “ARMin: A robot for patient-cooperative arm therapy,” Med. Biol. Eng. Comput. 45(9), 887900 (2007).CrossRefGoogle ScholarPubMed
Nef, T. and Riener, R., “Shoulder Actuation Mechanisms for Arm Rehabilitation Exoskeletons,” 2008 2nd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (2008) pp. 862868.Google Scholar
Otten, A., Voort, C., Stienen, A., Aarts, R., van Asseldonk, E. and van der Kooij, H., “LIMPACT: A hydraulically powered self-aligning upper limb exoskeleton,” IEEE/ASME Trans. Mechatron. 20(5), 22852298 (2015).CrossRefGoogle Scholar
Pan, D., Gao, F., Miao, Y. and Cao, R., “Co-simulation research of a novel exoskeleton-human robot system on humanoid gaits with fuzzy-PID/PID algorithms,” Adv. Eng. Software 79, 3646 (2015).CrossRefGoogle Scholar
Perry, J. C., Rosen, J. and Burns, S., “Upper-limb powered exoskeleton design,” IEEE/ASME Trans. Mechatron. 12(4), 408417 (2007).CrossRefGoogle Scholar
Piña-Martnez, E., Roberts, R., Rodriguez-Leal, E., Flores-Arredondo, J. H. and Soto, R., “A Novel Exoskeleton for Continuous Monitoring of the Upper-Limb During Gross Motor Rehabilitation,” In: Converging Clinical and Engineering Research on Neurorehabilitation II: Proceedings of the 3rd International Conference on NeuroRehabilitation (ICNR 2016), October 18–21, 2016, Segovia, Spain (Ibáñez, J., González-Vargas, J., Azorn, J. M., Akay, M. and Pons, J. L., eds.) (Springer International Publishing, Cham, 2017) pp. 11991203.Google Scholar
Rahman, M. H., Rahman, M. J., Cristobal, O. L., Saad, M., Kenné, J. P. and Archambault, P. S., “Development of a whole arm wearable robotic exoskeleton for rehabilitation and to assist upper limb movements,” Robotica 33(1), 1939 (2014).CrossRefGoogle Scholar
Stroppa, F., Loconsole, C., Marcheschi, S. and Frisoli, A., “A Robot-Assisted Neuro-Rehabilitation System for Post-Stroke Patients’ Motor Skill Evaluation with ALEx Exoskeleton,” In: Converging Clinical and Engineering Research on Neurorehabilitation II (Ibáñez, J., González-Vargas, J., Azorn, J. M., Akay, M. and Pons, J. L., eds.) (Springer International Publishing, Cham, 2017) pp. 501505.CrossRefGoogle Scholar
Sutapun, A. and Sangveraphunsiri, V., “A 4-DOF upper limb exoskeleton for stroke rehabilitation: Kinematics mechanics and control,” Int. J. Mech. Eng. Rob. Res. 4(3), 269272 (2015).Google Scholar
Tang, Z., Zhang, K., Sun, S., Gao, Z., Zhang, L. and Yang, Z., “An upper-limb power-assist exoskeleton using proportional myoelectric control,” Sens. (Basel, Switzerland) 14(4), 66776694 (2014).CrossRefGoogle ScholarPubMed
Xiao, F., Gao, Y., Wang, Y., Zhu, Y. and Zhao, J., “Design of a wearable cable-driven upper limb exoskeleton based on epicyclic gear trains structure,” Technol. Health Care. 25(S1), 311 (2017).Google ScholarPubMed
Gopura, R. A. R. C., Bandara, D. S. V., Kiguchi, K. and Mann, G. K. I., “Developments in hardware systems of active upper-limb exoskeleton robots: A review,” Rob. Auton. Syst. 75, 203220 (2016).CrossRefGoogle Scholar
Islam, M., Spiewak, C., Rahman, M. and Fareh, R., “A brief review on robotic exoskeletons for upper extremity rehabilitation to find the gap between research porotype and commercial type,” Adv. Robot Autom. 6(3), (2017) pp. 112.CrossRefGoogle Scholar
Jarrassé, N., Proietti, T., Crocher, V., Robertson, J., Sahbani, A., Morel, G. and Roby-Brami, A., “Robotic exoskeletons: A perspective for the rehabilitation of arm coordination in stroke patients,” Front. Hum. Neurosci. 8(947), (2014) pp. 113.Google ScholarPubMed
Maciejasz, P., Eschweiler, J., Gerlach-Hahn, K., Jansen-Troy, A. and Leonhardt, S., “A survey on robotic devices for upper limb rehabilitation,” J. NeuroEng. Rehabil. 11(1), 3 (2014).Google ScholarPubMed
Chen, Y., Li, G., Zhu, Y., Zhao, J. and Cai, H., “Design of a 6-DOF upper limb rehabilitation exoskeleton with parallel actuated joints,” Bio-Med. Mater. Eng. 24(6), 25272535 (2014).CrossRefGoogle ScholarPubMed
Madani, T., Daachi, B. and Djouani, K., “Modular-controller-design-based fast terminal sliding mode for articulated exoskeleton systems,” IEEE Trans. Control Syst. Technol. 25(3), 11331140 (2017).CrossRefGoogle Scholar
Rahman, M. H., Saad, M., Kenné, J.-P. and Archambault, P. S., “Control of an exoskeleton robot arm with sliding mode exponential reaching law,” Int. J. Control Autom. Syst. 11(1), 92104 (2013).CrossRefGoogle Scholar
Gopura, R. A. R. C., Kiguchi, K. and Li, Y., “SUEFUL-7: A 7DOF Upper-limb Exoskeleton Robot with Muscle-model-oriented EMG-based Control,” 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems (2009) pp. 11261131.Google Scholar
Zeiaee, A., Soltani-Zarrin, R., Langari, R. and Tafreshi, R., “Design and kinematic analysis of a novel upper limb exoskeleton for rehabilitation of stroke patients,” 2017 International Conference on Rehabilitation Robotics (ICORR) (2017) pp. 759764.Google Scholar
Fellag, R., Benyahia, T., Drias, M., Guiatni, M. and Hamerlain, M., “Sliding Mode Control of a 5 Dofs Upper Limb Exoskeleton Robot,” 2017 5th International Conference on Electrical Engineering – Boumerdes (ICEE-B) (2017) pp. 16.Google Scholar
Babaiasl, M., Goldar, S. N., Barhaghtalab, M. H. and Meigoli, V., “Sliding Mode Control of an Exoskeleton Robot for use in Upper-limb Rehabilitation,” 2015 3rd RSI International Conference on Robotics and Mechatronics (ICROM) (2015) pp. 694701.Google Scholar
Brahmi, B., Saad, M., Luna, C. O., Archambault, P. S. and Rahman, M. H., “Sliding Mode Control of an Exoskeleton Robot Based on Time Delay Estimation,” 2017 International Conference on Virtual Rehabilitation (ICVR) (2017) pp. 12.Google Scholar
Zhu, S., Jin, X., Yao, B., Chen, Q., Pei, X. and Pan, Z., “Non-linear sliding mode control of the lower extremity exoskeleton based on human–robot cooperation,” Int. J. Adv. Rob. Syst. 13(5), 1729881416662788 (2016).Google Scholar
Chen, H., Chen, H. and Yang, F., “Fractional-order Sliding-mode Stabilization of Nonholonomic Mobile Robots Based on Dynamic Feedback Linearization,” 2016 35th Chinese Control Conference (CCC) (2016) pp. 58745878.Google Scholar
Cheng, Z., Ma, Z., Sun, G. and Dong, H., “Fractional Order Sliding Mode Control for Attitude and Altitude Stabilization of a Quadrotor UAV,” 2017 Chinese Automation Congress (CAC) (2017) pp. 26512656.Google Scholar
Tianyi, Z., Xuemei, R. and Yao, Z., “A Fractional Order Sliding Mode Controller Design for Spacecraft Attitude Control System,” 2015 34th Chinese Control Conference (CCC) (2015) pp. 33793382.Google Scholar
Tian, J., Chen, N., Yang, J. and Wang, L., “Fractional Order Sliding Model Control of Active Four-wheel Steering Vehicles,” ICFDA’14 International Conference on Fractional Differentiation and Its Applications 2014 (2014) pp. 15.Google Scholar
Bourouba, B. and Ladaci, S., “Stabilization of Class of Fractional-order Chaotic System Via New Sliding Mode Control,” 2017 6th International Conference on Systems and Control (ICSC) (2017) pp. 470475.Google Scholar
Kang, J., Zhu, Z. H., Wang, W., Li, A. and Wang, C., “Fractional order sliding mode control for tethered satellite deployment with disturbances,” Adv. Space Res. 59(1), 263273 (2017).CrossRefGoogle Scholar
Islam, M. R., Assad-Uz-Zaman, M. and Rahman, M. H., “Design and control of an ergonomic robotic shoulder for wearable exoskeleton robot for rehabilitation,” Int. J. Dyn. Control (2019) pp. 114.Google Scholar
Crabolu, M., Pani, D., Raffo, L., Conti, M., Crivelli, P. and Cereatti, A., “In vivo estimation of the shoulder joint center of rotation using magneto-inertial sensors: MRI-based accuracy and repeatability assessment,” Biomed. Eng. Online 16(1), 3434 (2017).CrossRefGoogle ScholarPubMed
Halder, A. M., Itoi, E. and An, K.-N., “Anatomy and biomechanics of the shoulder,” Orthop. Clinic. 31(2), 159176 (2000).Google ScholarPubMed
Soltani-Zarrin, R., Zeiaee, A., Langari, R. and Tafreshi, R., “A Computational Approach for Human-like Motion Generation in Upper Limb Exoskeletons Supporting Scapulohumeral Rhythms,” IEEE International Symposium on Wearable & Rehabilitation Robotics (WeRob2017) (Houston, Texas, USA, 2017) pp. 12.CrossRefGoogle Scholar
Craig, J. J., Introduction to Robotics: Mechanics and Control (Pearson, Upper saddle river, New Jersy, 2017) p. 448.Google Scholar
Denavit, J. and Hartenberg, R. S., “A kinematic notation for lower-pair mechanisms based on matrices,” Trans. of the ASME. J. Appl. Mech. 22, 215221 (1955).Google Scholar
Rahmani, M. and Rahman, M. H., “Novel robust control of a 7-DOF exoskeleton robot,” PLoS One 13(9), e0203440 (2018).CrossRefGoogle ScholarPubMed
Rahmani, M., Rahman, M. H. and Ghommam, J., “A 7-DoF upper limb exoskeleton robot control using a new robust hybrid controller,” Int. J. Control Autom. Syst. 17(4), 986994 (2019).CrossRefGoogle Scholar
Winter, D. A., “Anthropometry,” In: Biomechanics and Motor Control of Human Movement (Winter, D.A., eds.) (John Wiley & Sons, New York, 2009) p. 370.CrossRefGoogle Scholar