Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-12T09:00:51.422Z Has data issue: false hasContentIssue false

A new method for evaluating kinesthetic acuity during haptic interaction

Published online by Cambridge University Press:  10 September 2014

D. De Santis*
Affiliation:
Department of Robotics, Brain and Cognitive Sciences (RBCS), Istituto Italiano di Tecnologia, Genova, Italy
J. Zenzeri
Affiliation:
Department of Robotics, Brain and Cognitive Sciences (RBCS), Istituto Italiano di Tecnologia, Genova, Italy
M. Casadio
Affiliation:
Department of Robotics, Brain and Cognitive Sciences (RBCS), Istituto Italiano di Tecnologia, Genova, Italy Department of Informatics, Bioengineering, Robotics and Systems (DIBRIS), University of Genova, Genova, Italy
L. Masia
Affiliation:
Department of Robotics, Brain and Cognitive Sciences (RBCS), Istituto Italiano di Tecnologia, Genova, Italy Robotic Research Center, Division of Mechatronics & Design, Nanyang Technological University, Singapore
P. Morasso
Affiliation:
Department of Robotics, Brain and Cognitive Sciences (RBCS), Istituto Italiano di Tecnologia, Genova, Italy Department of Informatics, Bioengineering, Robotics and Systems (DIBRIS), University of Genova, Genova, Italy
V. Squeri
Affiliation:
Department of Robotics, Brain and Cognitive Sciences (RBCS), Istituto Italiano di Tecnologia, Genova, Italy
*
*Corresponding author. Email: [email protected]

Summary

Although proprioceptive impairment is likely to affect in a significant manner the capacity of stroke patients to recover functionality of upper limb, clinical assessment methods currently in use are rather crude, with a low level of reliability and a limited capacity to discriminate the relevant features of this severe deficit. In the present paper, we describe a new technique based on robot technology, with the goal of providing a reliable, accurate, and quantitative evaluation of kinesthetic acuity, which can be integrated in robot therapy. The proposed technique, based on a pulsed assistance paradigm, has been evaluated on a group of healthy subjects.

Type
Articles
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.De Santis, D., Masia, L., Morasso, P., Squeri, V., Zenzeri, J., Casadio, M. and Riva, A., “Pulsed Assistance: A New Paradigm of Robot Training,” Proceedings of the IEEE International Conference on Rehabilitation Robotics, Seattle, (Jun. 24–26, 2013) pp. 1–7.CrossRefGoogle Scholar
2.Carey, L. M., Oke, L. E. and Matyas, T. A., “Impaired limb position sense after stroke: A quantitative test for clinical use,” Arch. Phys. Med. Rehabil. 77 (12), 12711278 (Dec. 1996).CrossRefGoogle ScholarPubMed
3.Casadio, M., Morasso, P., Sanguineti, V. and Giannoni, P., “Minimally assistive robot training for proprioception enhancement,” Exp. Brain Res. 194 (2), 219231 (Apr. 2009).CrossRefGoogle ScholarPubMed
4.Cho, S., Ku, J., Cho, Y. K., Kim, I. Y., Kang, Y. J., Jang, D. P. and Kim, S. I., “Development of virtual reality proprioceptive rehabilitation system for stroke patients,” Comput. Methods Programs Biomed. 113 (1), 258265 (Jan. 2014).CrossRefGoogle ScholarPubMed
5.Dukelow, S. P., Herter, T. M., Bagg, S. D. and Scott, S. H., “The independence of deficits in position sense and visually guided reaching following stroke,” J. Neuroeng. Rehabil. 9 (1), 72 (Jan. 2012).CrossRefGoogle ScholarPubMed
6.Dukelow, S. P., Herter, T. M., Moore, K. D., Demers, M. J., Glasgow, J. I., Bagg, S. D., Norman, K. E. and Scott, S. H., “Quantitative assessment of limb position sense following stroke,” Neurorehabil. Neural Repair, 24 (2), 178187 (Feb. 2010).CrossRefGoogle ScholarPubMed
7.Scott, S. H., “Apparatus for measuring and perturbing shoulder and elbow joint positions and torques during reaching,” J. Neurosci. Methods, 89 (2), 119127 (Jul. 1999).CrossRefGoogle ScholarPubMed
8.Semrau, J. A., Herter, T. M., Scott, S. H. and Dukelow, S. P., “Robotic identification of kinesthetic deficits after stroke,” Stroke, 44 (12), 34143421 (Dec. 2013).CrossRefGoogle ScholarPubMed
9.Squeri, V., Zenzeri, J., Morasso, P. and Basteris, A., “Integrating Proprioceptive Assessment with Proprioceptive Training of Stroke Patients,” Proceedings of the IEEE International Conference on Rehabilitation Robotics, Zurich (Jun. 29–Jul. 1, 2011) p. 5975500.CrossRefGoogle Scholar
10.Wong, J. D., Kistemaker, D. A., Chin, A. and Gribble, P. L., “Can proprioceptive training improve motor learning?,” J. Neurophysiol. 108 (12), 33133321 (Dec. 2012).CrossRefGoogle ScholarPubMed
11.Kusoffsky, A., Wadell, I. and Nilsson, B. Y., “The relationship between sensory impairment and motor recovery in patients with hemiplegia,” Scand. J. Rehabil. Med. 14 (1), 2732 (Jan. 1982).Google ScholarPubMed
12.La Joie, W. J., Reddy, N. M. and Melvin, J. L., “Somatosensory evoked potentials: Their predictive value in right hemiplegia,” Arch. Phys. Med. Rehabil. 63 (5), 223226 (May 1982).Google ScholarPubMed
13.Katrak, P., Bowring, G., Conroy, P., Chilvers, M., Poulos, R. and McNeil, D., “Predicting upper limb recovery after stroke: The place of early shoulder and hand movement,” Arch. Phys. Med. Rehabil. 79 (7), 758761 (Jul. 1998).CrossRefGoogle ScholarPubMed
14.Rand, D., Weiss, P. L. and Gottlieb, D., “Does proprioceptive loss influence recovery of the upper extremity after stroke?,” Neurorehabil. Neural Repair 13 (1), 1521 (Mar. 1999).CrossRefGoogle Scholar
15.Proske, U. and Gandevia, S. C., “The kinaesthetic senses,” J. Physiol. 587 (17), 41394146 (Sep. 2009).CrossRefGoogle ScholarPubMed
16.Klyubin, A. S., Polani, D. and Nehaniv, C. L., “Representations of space and time in the maximization of information flow in the perception-action loop,” Neural Comput. 19 (9), 23872432 (Sep. 2007).CrossRefGoogle ScholarPubMed
17.Little, D. Y. and Sommer, F. T., “Learning and exploration in action-perception loops,” Front. Neural Circuits 7, 37 (Jan. 2013).CrossRefGoogle ScholarPubMed
18.Gibson, J. J., The Ecologiacl Approach to Visual Perception (Houghton Mifflin, Boston, MA, 1979).Google Scholar
19.Muaidi, Q. I., Nicholson, L. L., Refshauge, K. M., Adams, R. D. and Roe, J. P., “Effect of anterior cruciate ligament injury and reconstruction on proprioceptive acuity of knee rotation in the transverse plane,” Am. J. Sports Med. 37 (8), 16181626 (Aug. 2009).CrossRefGoogle ScholarPubMed
20.Han, J., Anson, J., Waddington, G. and Adams, R., “Proprioceptive performance of bilateral upper and lower limb joints: Side-general and site-specific effects,” Exp. Brain Res. 226 (3), 313323 (May 2013).CrossRefGoogle ScholarPubMed
21.Nasir, S. M., Darainy, M. and Ostry, D. J., “Sensorimotor adaptation changes the neural coding of somatosensory stimuli,” J. Neurophysiol. 109 (8), 20772085 (Apr. 2013).CrossRefGoogle ScholarPubMed
22.Ostry, D. J., Darainy, M., Mattar, A. A., Wong, J. and Gribble, P. L., “Somatosensory plasticity and motor learning,” J. Neurosci. 30 (15), 53845393 (Apr. 2010).CrossRefGoogle ScholarPubMed
23.Marchal-Crespo, L. and Reinkensmeyer, D. J., “Review of control strategies for robotic movement training after neurologic injury,” J. Neuroeng. Rehabil. 6, 20 (Jan. 2009).CrossRefGoogle ScholarPubMed
24.Casadio, M., Sanguineti, V., Morasso, P. G. and Arrichiello, V., “Braccio di Ferro: A new haptic workstation for neuromotor rehabilitation,” Technol. Health Care 14 (3), 123142 (Jan. 2006).CrossRefGoogle Scholar
25.Oldfield, R. C., “The assessment and analysis of handedness: The Edinburgh inventory,” Neuropsychologia 9 (1), 97113 (Mar. 1971).CrossRefGoogle ScholarPubMed
26.Darainy, M., Vahdat, S. and Ostry, D. J., “Perceptual learning in sensorimotor adaptation,” J. Neurophysiol. 110 (9), 21522162 (Nov. 2013).CrossRefGoogle ScholarPubMed
27.Nudo, R. J., “Mechanisms for recovery of motor function following cortical damage,” Curr. Opin. Neurobiol. 16 (6), 638644 (Dec. 2006).CrossRefGoogle ScholarPubMed
28.van den Brand, R.et al., “Restoring voluntary control of locomotion after paralyzing spinal cord injury,” Science 336 (6085), 11821185 (Jun. 2012).CrossRefGoogle ScholarPubMed
29.van Beers, R. J., Sittig, A. C. and van der Gon, J. J. Denier, “The precision of proprioceptive position sense,” Exp. Brain Res. 122 (4), 367377 (Oct. 1998).CrossRefGoogle ScholarPubMed
30.Sabes, P. N., Jordan, M. I. and Wolpert, D. M., “The role of inertial sensitivity in motor planning,” J. Neurosci. 18 (15), 59485957 (Aug. 1998).CrossRefGoogle ScholarPubMed
31.Gordon, J., Ghilardi, M. F., Cooper, S. E. and Ghez, C., “Accuracy of planar reaching movements. II. Systematic extent errors resulting from inertial anisotropy,” Exp. Brain Res. 99 (1), 112130 (Jan. 1994).CrossRefGoogle ScholarPubMed
32.Hogan, N., “The mechanics of multi-joint posture and movement control,” Biol. Cybern. 52 (5), 315331 (Sep. 1985).CrossRefGoogle ScholarPubMed
33.Ghez, C., Krakauer, J., Ghilardi, M. F. and Sainburg, R., The Cognitive Neurosciences (Gazzaniga, M. S. E., ed.) (MIT Press, Cambridge, MA, 1995) 549 p.Google Scholar
34.Goble, D. J., Noble, B. C. and Brown, S. H., “Proprioceptive target matching asymmetries in left-handed individuals,” Exp. Brain Res. 197 (4), 403408 (Jul. 2009).CrossRefGoogle ScholarPubMed
35.Wang, J. and Sainburg, R. L., “The dominant and nondominant arms are specialized for stabilizing different features of task performance,” Exp. Brain Res. 178 (4), 565570 (Apr. 2007).CrossRefGoogle ScholarPubMed
36.Sainburg, R. L., “Evidence for a dynamic-dominance hypothesis of handedness,” Exp. Brain Res. 142 (2), 241258 (Jan. 2002).CrossRefGoogle ScholarPubMed