Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-23T21:59:47.290Z Has data issue: false hasContentIssue false

A methodology for design and appraisal of surgical robotic systems

Published online by Cambridge University Press:  07 December 2009

Michael D. O'Toole*
Affiliation:
Wolfson School of Mechanical and Manufacturing Engineering, Loughborough University, Loughborough, Leicestershire
Kaddour Bouazza-Marouf
Affiliation:
Wolfson School of Mechanical and Manufacturing Engineering, Loughborough University, Loughborough, Leicestershire
David Kerr
Affiliation:
Wolfson School of Mechanical and Manufacturing Engineering, Loughborough University, Loughborough, Leicestershire
Mahendra Gooroochurn
Affiliation:
Wolfson School of Mechanical and Manufacturing Engineering, Loughborough University, Loughborough, Leicestershire
Michael Vloeberghs
Affiliation:
Wolfson School of Mechanical and Manufacturing Engineering, Loughborough University, Loughborough, Leicestershire
*
*Corresponding author. E-mail: [email protected]

Summary

Surgical robotics is a growing discipline, continuously expanding with an influx of new ideas and research. However, it is important that the development of new devices take account of past mistakes and successes. A structured approach is necessary, as with proliferation of such research, there is a danger that these lessons will be obscured, resulting in the repetition of mistakes and wasted effort and energy. There are several research paths for surgical robotics, each with different risks and opportunities and different methodologies to reach a profitable outcome. The main emphasis of this paper is on a methodology for ‘applied research’ in surgical robotics. The methodology sets out a hierarchy of criteria consisting of three tiers, with the most important being the bottom tier and the least being the top tier. It is argued that a robotic system must adhere to these criteria in order to achieve acceptability. Recent commercial systems are reviewed against these criteria, and are found to conform up to at least the bottom and intermediate tiers, the most important first two tiers, and thus gain some acceptability. However, the lack of conformity to the criteria in the top tier, and the inability to conclusively prove increased clinical benefit, is shown to be hampering their potential in gaining wide establishment.

Type
Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kwoh, Y. S., Hou, J., Jonckheere, E. A. and Hayati, S., “A robot with improved absolute positioning accuracy for CT guided stereotactic brain surgery,” IEEE Trans. Biomed. Eng. 35 (2), 153160 (1988).CrossRefGoogle ScholarPubMed
2. Taylor, R. H. and Stoianovici, D., “Medical robotics in computer-integrated surgery,” IEEE Trans. Robotics Automat. 19 (5), 765781 (2003).CrossRefGoogle Scholar
3. Dario, P., Hannaford, B. and Menciassi, A., “Smart surgical tools and augmenting devices,” IEEE Trans. Robotics Automat. 19 (5), 782792 (2003).CrossRefGoogle Scholar
4. Davies, B., “A review of robotics in surgery,” Proc. Inst. Mech. Eng. Part H: J. Eng. Med. 214 (H1), 129140 (2000).CrossRefGoogle ScholarPubMed
5. Pott, P. P., Scharf, H. P. and Schwarz, M. L., “Today's state of the art in surgical robotics,” Comput. Aided Surg. 10 (2), 101132 (2005).Google ScholarPubMed
6. Patronik, N. A., Zenati, M. A. and Riviere, C. N., “Preliminary evaluation of a mobile robotic device for navigation and intervention on the beating heart,” Comput. Aided Surg. 10 (4), 225232 (2005).CrossRefGoogle ScholarPubMed
7. Lu, Y. W. and Kim, C. J., “Microhand for biological applications,” Appl. Phys. Lett. 89 (16), (2006).Google Scholar
8. Guo, S., Sawamoto, J. and Pan, Q., “A novel type of microrobot for biomedical application,” International Conference on Intelligent Robots and Systems, Alberta, Canada (2005).Google Scholar
9. Kosa, G., Shoham, M. and Zaaroor, M., “Propulsion of a swimming micro medical robot,” Proceedings of the 2005 IEEE International Conference on Robotics and Automation, Alberta, Canada (2005).Google Scholar
10. Yesin, K. B., Vollmers, K. and Nelson, B. J., “Modeling and control of untethered biomicrorobots in a fluidic environment using electromagnetic fields,” Int. J. Robotics Res. 25 (5/6), 527536 (2006).CrossRefGoogle Scholar
11. Sitti, M. and Behkam, B., “Modeling and testing of a biomimetic flagellar propulsion method for microscale biomedical swimming robots,” Proceedings of the 2005 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Monterey, CA (2005).Google Scholar
12. Dario, P. and Menciassi, A., “Frontiers of robotics in surgery: Endoluminal, endoscopic microcapsules and beyond,” IMechE Seminar on Robotic Surgery – Recent Success and Future Direction, London, UK (2008).Google Scholar
13. Atkins, D., Best, D., Briss, P. A., Eccles, M., Falck-Ytter, Y., Flottorp, S., Guyatt, G. H., Harbour, R. T., Haugh, M. C., Henry, D., Hill, S., Jaeschke, R., Leng, G., Liberati, A., Magrini, N., Mason, J., Middleton, P., Mrukowicz, J., O'Connell, D., Oxman, A. D., Phillips, B., Schunemann, H. J., Edejer, T. T., Varonen, H., Vist, G. E., Williams, J. W. Jr., and Zaza, S., “Grading quality of evidence and strength of recommendations,” BMJ Clin. Res. 328 (7454), 1490 (2004).Google ScholarPubMed
14. Menon, M., Shrivastava, A. and Tewari, A., “Laparoscopic radical prostatectomy: Conventional and robotic,” Urology 66 (5 Suppl.), 101104 (2005).CrossRefGoogle ScholarPubMed
15. Menon, M., Shrivastava, A., Kaul, S., Badani, K. K., Fumo, M., Bhandari, M. and Peabody, J. O., “Vattikuti Institute prostatectomy: Contemporary technique and analysis of results,” Eur. Urol. 51 (3), 648657; discussion 657–648 (2007).CrossRefGoogle ScholarPubMed
16. Murphy, D. G., Kerger, M., Crowe, H., Peters, J. S. and Costello, A. J., “Operative details and oncological and functional outcome of robotic-assisted laparoscopic radical prostatectomy: 400 cases with a minimum of 12 months follow-up,” Eur. Urol. 55 (6), 13581367 (2009).CrossRefGoogle ScholarPubMed
17. Hananouchi, T., Sugano, N., Nishii, T., Nakamura, N., Miki, H., Kakimoto, A., Yamamura, M. and Yoshikawa, H., “Effect of robotic milling on periprosthetic bone remodeling,” J. Orthop. Res. 25 (8), 10621069 (2007).CrossRefGoogle ScholarPubMed
18. Kornprat, P., Werkgartner, G., Cerwenka, H., Bacher, H., El-Shabrawi, A., Rehak, P. and Mischinger, H. J., “Prospective study comparing standard and robotically assisted laparoscopic cholecystectomy,” Langenbecks Arch. Surg. 391 (3), 14352443 (2006).CrossRefGoogle ScholarPubMed
19. Wu, J. C., Wu, H. S., Lin, M. S., Chou, D. A. and Huang, M. H., “Comparison of robot-assisted laparoscopic adrenalectomy with traditional laparoscopic adrenalectomy – 1 year follow-up,” Surg. Endosc. 22 (2), 463466 (2008).CrossRefGoogle ScholarPubMed
20. Rodriguez, F., Harris, S., Jakopec, M., Barrett, A., Gomes, P., Henckel, J., Cobb, J. and Davies, B., “Robotic clinical trials of uni-condylar arthroplasty,” Int. J. Med. Robot 1 (4), 2028 (2005).CrossRefGoogle ScholarPubMed
21. Zhou, H. X., Guo, Y. H., Yu, X. F., Bao, S. Y., Liu, J. L., Zhang, Y. and Ren, Y. G., “Zeus robot-assisted laparoscopic cholecystectomy in comparison with conventional laparoscopic cholecystectomy,” Hepatobiliary Pancreat. Dis. Int. 5 (1), 115118 (2006).Google ScholarPubMed
22. Varma, T. R. K. and Eldridge, P., “Use of the NeuroMate stereotactic robot in a frameless mode for functional neurosurgery,” Int. J. Med. Robotics Comput. Assisted Surg. 2 (2), 107113 (2006).CrossRefGoogle Scholar
23. Gurusamy, K. S., Samraj, K., Fusai, G. and Davidson, B. R., Robot assistant for laparoscopic cholecystectomy. Cochrane Database of Systematic Reviews, Issue 1, (2009).CrossRefGoogle Scholar
24. Wagner, A. A., Varkarakis, I. M., Link, R. E., Sullivan, W. and Su, L. M., “Comparison of surgical performance during laparoscopic radical prostatectomy of two robotic camera holders, EndoAssist and AESOP: Apilot study,” Urology 68 (1), 7074 (2006).CrossRefGoogle Scholar
25. Alessandrini, M., De Padova, A., Napolitano, B., Camillo, A. and Bruno, E., “The AESOP robot system for video-assisted rigid endoscopic laryngosurgery,” Eur. Arch. Otorhinolaryngol. 265 (9), 11211123 (2008).CrossRefGoogle ScholarPubMed
26. Calcerrada Diaz-Santos, N., Blasco Amaro, J. A., Cardiel, G. A. and Aragones, E. Andradas, “The safety and efficacy of robotic image-guided radiosurgery system treatment for intra- and extracranial lesions: A systematic review of the literature,” Radiother. Oncol. 89 (3), 245253 (2008).CrossRefGoogle ScholarPubMed
27. Andrews, D. W., Bednarz, G., Evans, J. J. and Downes, B., “A review of 3 current radiosurgery systems,” Surg. Neurol. 66 (6), 559564 (2006).CrossRefGoogle ScholarPubMed
28. Colombo, F., Casentini, L., Cavedon, C., Scalchi, P., Cora, S. and Francescon, P., “Cyberknife radiosurgery for benign meningiomas: Short-term results in 199 patients,” Neurosurgery 64 (2 Suppl.), A713 (2009).CrossRefGoogle ScholarPubMed
29. Berryhill, R. Jr., Jhaveri, J., Yadav, R., Leung, R., Rao, S., El-Hakim, A. and Tewari, A., “Robotic prostatectomy: A review of outcomes compared with laparoscopic and open approaches,” Urology 72 (1), 1523 (2008).CrossRefGoogle ScholarPubMed
30. Ficarra, V., Cavalleri, S., Novara, G., Aragona, M. and Artibani, W., “Evidence from robot-assisted laparoscopic radical prostatectomy: A systematic review,” Eur. Urol. 51 (1), 4555; discussion 56 (2007).CrossRefGoogle ScholarPubMed
31. Aiono, S., Gilbert, J. M., Soin, B., Finlay, P. A. and Gordan, A., “Controlled trial of the introduction of a robotic camera assistant (EndoAssist) for laparoscopic cholecystectomy,” Surg. Endosc. 16 (9), 12671270 (2002).CrossRefGoogle ScholarPubMed
32. Gilbert, J. M., “The EndoAssist robotic camera holder as an aid to the introduction of laparoscopic colorectal surgery,” Ann. Roy. College Surgeons Engl. 91 (5), 389393 (2009).CrossRefGoogle Scholar
33. Tanoue, K., Yasunaga, T., Kobayashi, E., Miyamoto, S., Sakuma, I., Dohi, T., Konishi, K., Yamaguchi, S., Kinjo, N., Takenaka, K., Maehara, Y. and Hashizume, M., “Laparoscopic cholecystectomy using a newly developed laparoscope manipulator for 10 patients with cholelithiasis,” Surg. Endosc. 20 (5), 753756 (2006).CrossRefGoogle ScholarPubMed
34. Yoshino, I., Yasunaga, T., Hashizume, M. and Maehara, Y., “A novel endoscope manipulator, Naviot, enables solo-surgery to be performed during video-assisted thoracic surgery,” Interact. Cardiovasc. Thoracic Surg. 4 (5), 404405 (2005).CrossRefGoogle ScholarPubMed
35. Yamada, K. and Kato, S., “Robot-assisted thoracoscopic lung resection aimed at solo surgery for primary lung cancer,” Gen. Thoracic Cardiovasc. Surg. 56 (6), 292294 (2008).CrossRefGoogle ScholarPubMed
36. Eljamel, M. S., “Robotic neurological surgery applications: Accuracy and consistency or pure fantasy?Stereotactic Funct. Neurosurg. 87 (2), 8893 (2009).CrossRefGoogle ScholarPubMed
37. Eljamel, M. S., “Robotic application in epilepsy surgery,” Int. J. Med. Robot 2 (3), 233237 (2006).CrossRefGoogle ScholarPubMed
38. Nishihara, S., Sugano, N., Nishii, T., Miki, H., Nakamura, N. and Yoshikawa, H., “Comparison between hand rasping and robotic milling for stem implantation in cementless total hip arthroplasty,” J. Arthroplasty 21 (7), 957966 (2006).CrossRefGoogle ScholarPubMed
39. Schulz, A. P., Seide, K., Queitsch, C., von Haugwitz, A., Meiners, J., Kienast, B., Tarabolsi, M., Kammal, M. and Jurgens, C., “Results of total hip replacement using the Robodoc surgical assistant system: Clinical outcome and evaluation of complications for 97 procedures,” Int. J. Med. Robot 3 (4), 301306 (2007).CrossRefGoogle ScholarPubMed
40. Shoham, M., Lieberman, I. H., Benzel, E. C., Togawa, D., Zehavi, E., Zilberstein, B., Roffman, M., Bruskin, A., Fridlander, A., Joskowicz, L., Brink-Danan, S. and Knoller, N., “Robotic assisted spinal surgery – From concept to clinical practice,” Comput. Aided Surg. 12 (2), 105115 (2007).Google ScholarPubMed
41. Pechlivanis, I., Kiriyanthan, G., Engelhardt, M., Scholz, M., Lucke, S., Harders, A. and Schmieder, K., “Percutaneous placement of pedicle screws in the lumbar spine using a bone mounted miniature robotic system: First experiences and accuracy of screw placement,” Spine 34 (4), 392398 (2009).CrossRefGoogle ScholarPubMed
42. Kornprat, P., Werkgartner, G., Cerwenka, H., Bacher, H., El-Shabrawi, A., Rehak, P. and Mischinger, H. J., “Prospective study comparing standard and robotically assisted laparoscopic cholecystectomy,” Langenbecks Arch. Surg. 391 (3), 216221 (2006).CrossRefGoogle ScholarPubMed
43. Heemskerk, J., Zandbergen, R., Maessen, J. G., Greve, J. W. and Bouvy, N. D., “Advantages of advanced laparoscopic systems,” Surg. Endosc. 20 (5), 730733 (2006).CrossRefGoogle ScholarPubMed
44. Sim, H. G., Yip, S. K. H. and Cheng, C. W. S., “Equipment and technology in surgical robotics,” World J. Urol. 24 (2), 128135 (2006).CrossRefGoogle ScholarPubMed
45. Rane, A., Kommu, S., Eddy, B., Rimington, P. and Anderson, C., “Initial experience with the endoassist (R) camera holding robot in laparoscopic urological surgery,” Eur. Urol. Suppl. 6 (2), 186186 (2007).CrossRefGoogle Scholar
46. Finlay, P. A. and Morgan, P., “PathFinder image guided robot for neurosurgery,” Industr. Robot Int. J. 30 (1), 3034 (2003).CrossRefGoogle Scholar
47. Fei, B. W., Ng, W. S., Chauhan, S. and Kwoh, C. K., “The safety issues of medical robotics,” Reliability Eng. Syst.Safety 73 (2), 183192 (2001).CrossRefGoogle Scholar
48. Varley, P., “Techniques for development of safety-related software for surgical robots,” IEEE Trans. Information Technol. Biomed. 3 (4), 261267 (1999).CrossRefGoogle ScholarPubMed
49. Guiochet, J. and Vilchis, A., “Safety analysis of a medical robot for tele-echography”, Proceedings of the IARP Workshop on Dependable Robots, Toulouse, France (2002).Google Scholar
50. Korb, W., Kornfeld, M., Birkfellner, W., Boesecke, R., Figl, M., Fuerst, M., Kettenbach, J., Vogler, A., Hassfeld, S. and Kornreif, G., “Risk analysis and safety assessment in surgical robotics: A case study on a biopsy robot,” Minim. Invasive Ther. Allied Technol. 14 (1), 2331 (2005).CrossRefGoogle ScholarPubMed
51. Kilic, D. and Croft, E. A., “Safe planning for human–robot interaction,” J. Robotic Syst. 22 (7), 383396 (2005).CrossRefGoogle Scholar
52. Scales, C. D. Jr., Jones, P. J., Eisenstein, E. L., Preminger, G. M. and Albala, D. M., “Local cost structures and the economics of robot assisted radical prostatectomy,” J. Urol. 174 (6), 23232329 (2005).CrossRefGoogle ScholarPubMed
53. Lotan, Y., Cadeddu, J. A. and Gettman, M. T., “The new economics of radical prostatectomy: Cost comparison of open, laparoscopic and robot assisted techniques,” J. Urol. 172 (4 Pt 1), 14311435 (2004).CrossRefGoogle ScholarPubMed