Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-08T06:05:50.506Z Has data issue: false hasContentIssue false

Mechatronic design of dynamically decoupled manipulators based on the control performance improvement

Published online by Cambridge University Press:  27 October 2022

Yaodong Lu*
Affiliation:
Mecaproce/INSA-Rennes, 20 av. des Buttes de Coesmes, CS 70839, Rennes, 35708, France France, Laboratoire des Sciences du Numérique de Nantes, UMR 6004, 1, rue DE LA Noë, BP 92101, Nantes, 44321 Nantes Université, École Centrale de Nantes, France
Yannick Aoustin
Affiliation:
France, Laboratoire des Sciences du Numérique de Nantes, UMR 6004, 1, rue DE LA Noë, BP 92101, Nantes, 44321 Nantes Université, École Centrale de Nantes, France
Vigen Arakelian
Affiliation:
Mecaproce/INSA-Rennes, 20 av. des Buttes de Coesmes, CS 70839, Rennes, 35708, France France, Laboratoire des Sciences du Numérique de Nantes, UMR 6004, 1, rue DE LA Noë, BP 92101, Nantes, 44321 Nantes Université, École Centrale de Nantes, France
*
*Corresponding author. E-mail: [email protected]

Abstract

The control of industrial robot manipulators presents a difficult problem for control engineers due to the complexity of their nonlinear dynamics models. Nonlinear controls based on feedback linearization are developed to meet control requirements. Model-based nonlinear control is highly sensitive to parameter errors and leads to problems of robustness for tracking trajectories at high speeds, and there is the additional problem of a heavy computational burden to consider in the design of nonlinear controllers. In this paper, a mechatronic design approach is proposed, which aims to facilitate controller design by redesigning the mechanical structure. The problem is approached in two steps: first, the dynamic decoupling conditions of manipulators are described and discussed, involving redistribution of the moving mass, which leads to the decoupling of motion equations. A classical linear control law is then used to track the desired efficient bang-bang profile trajectory. Then, in the presence of parameter uncertainty and external disturbances, the nonlinear controls with simple structures are adopted to stabilize the decoupled system asymptotically. An analysis of the results from a simulation of this approach demonstrates its effectiveness in controller design. The proposed improvement in control performance is illustrated via two spatial manipulators.

Type
Research Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brogårdh, T., “Present and future robot control development-an industrial perspective,” Annu. Rev. Control 31(1), 6979 (2007).CrossRefGoogle Scholar
Luh, J., Fisher, W. and Paul, R., “Joint torque control by a direct feedback for industrial robots,” IEEE Trans. Automat. Control 28(2), 153161 (1983).CrossRefGoogle Scholar
Luh, J., “Conventional controller design for industrial robots-a tutorial,” IEEE Trans. Syst. Man Cybernet. 3(3), 298316 (1983).CrossRefGoogle Scholar
Meda-Campaña, J. A., Escobedo-Alva, J. O., d. J. Rubio, J., Aguilar-Ibañez, C., Perez-Cruz, J. H., Obregon-Pulido, G., Tapia-Herrera, R., Orozco, E., Cordova, D. A. and Islas, M. A., “On the rejection of random perturbations and the tracking of random references in a quadrotor,” Complexity 2022 (2022).CrossRefGoogle Scholar
de Jesús Rubio, J., Orozco, E., Cordova, D. A., Islas, M. A., Pacheco, J., Gutierrez, G. J., Zacarias, A., Soriano, L. A., Meda-Campaña, J. A. and Mujica-Vargas, D., “Modified linear technique for the controllability and observability of robotic arms,” IEEE Access 6(10), bvac127 (2022).Google Scholar
Aguilar-Ibanez, C., Moreno-Valenzuela, J., García-Alarcón, O., Martinez-Lopez, M., Acosta, J.Á. and Suarez-Castanon, M. S., “Pi-type controllers and $\sigma$ $\delta$ modulation for saturated dc-dc buck power converters,” IEEE Access 9, 2034620357 (2021).CrossRefGoogle Scholar
Soriano, L. A., d. J. Rubio, J., Orozco, E., Cordova, D. A., Ochoa, G., Balcazar, R., Cruz, D. R., Meda-Campaña, J. A., Zacarias, A. and Gutierrez, G. J., “Optimization of sliding mode control to save energy in a scara robot,” Mathematics 9(24), 3160 (2021).CrossRefGoogle Scholar
Soriano, L. A., Zamora, E., Vazquez-Nicolas, J., Hernández, G., Madrigal, J. A. B. and Balderas, D., “PD control compensation based on a cascade neural network applied to a robot manipulator,” Front. Neurorobot. 14, 139 (2020 78).CrossRefGoogle ScholarPubMed
Silva-Ortigoza, R., Hernández-Márquez, E., Roldán-Caballero, A., Tavera-Mosqueda, S., Marciano-Melchor, M., García-Sánchez, J. R., Hernández-Guzmán, V. M. and Silva-Ortigoza, G., “Sensorless tracking control for a “full-bridge buck inverter–DC motor,” IEEE Access 9, 132191132204 (2021).CrossRefGoogle Scholar
Kuo, C.-Y. and Wang, S.-P. T., Nonlinear robust industrial robot control (1989).CrossRefGoogle Scholar
Freund, E., “Fast nonlinear control with arbitrary pole-placement for industrial robots and manipulators,” Int. J. Robot. Res. 1(1), 6578 (1982).CrossRefGoogle Scholar
Poignet, P. and Gautier, M., “Nonlinear Model Predictive Control of a Robot Manipulator,” In: 6th International Workshop on Advanced Motion Control. Proceedings ( Cat. No. 00TH8494), (IEEE, 2000) pp. 401406.Google Scholar
Wang, D. and Vidyasagar, M., Control of a class of manipulators with a single flexible link: Part I-feedback linearization, (1991).CrossRefGoogle Scholar
Lewis, F., Abdallah, C. and Dawson, D.. Control of Robot, Manipulators (Editorial Maxwell McMillan, Canada, 1993) pp. 2536.Google Scholar
Spong, M. and Vidyasagar, M., “Robust linear compensator design for nonlinear robotic control,” IEEE J. Robot. Automat. 3(4), 345351 (1985).CrossRefGoogle Scholar
Slotine, J.-J. E., “The robust control of robot manipulators,Int. J Robot. Res. 4(2), 4964 (1985).CrossRefGoogle Scholar
Tarn, T.-J., Bejczy, A. K., Isidori, A. and Chen, Y., “Nonlinear Feedback in Robot Arm Control,” In: The 23rd IEEE Conference on Decision and Control (IEEE, 1984) pp. 736751.CrossRefGoogle Scholar
Shang, W. and Cong, S., “Nonlinear computed torque control for a high-speed planar parallel manipulator,” Mechatronics 19(6), 987992 (2009).CrossRefGoogle Scholar
Nguyen-Tuong, D., Seeger, M. and Peters, J., “Computed Torque Control with Nonparametric Regression Models,” In: 2008 American Control Conference (IEEE, 2008) pp. 212217.CrossRefGoogle Scholar
Sage, H., De Mathelin, M. and Ostertag, E., “Robust control of robot manipulators: A survey,” Int. J. Control 72(16), 14981522 (1999).CrossRefGoogle Scholar
Barjuei, E. S., Boscariol, P., Gasparetto, A., Giovagnoni, M. and Vidoni, R., Control Design for 3D Flexible Link Mechanisms Using Linearized Models (2014).CrossRefGoogle Scholar
Zhang, W., Li, Q. and Guo, L., “Integrated design of mechanical structure and control algorithm for a programmable four-bar linkage,” IEEE/ASME Trans. Mechatron. 4(4), 354362 (1999).CrossRefGoogle Scholar
Arakelian, V., Geng, J. and Lu, Y.. Torque Minimization of Dynamically Decoupled RR Spatial Serial Manipulators via Optimal Motion Control, Mechanism Design for Robotics: MEDER 2021, vol. 103 (2021).Google Scholar
Arakelian, V., Xu, J. and J.-P. Le Baron , “Dynamic decoupling of robot manipulators: A review with new examples,” Dynam. Decoupling Robot Manipulat., 123 (2018).Google Scholar
Youcef-Toumi, K. and Asada, H. H., “The Design of Open-Loop Manipulator Arms with Decoupled and Configuration-Invariant Inertia Tensors,” In: Proceedings of the 1986 IEEE International Conference on Robotics and Automation, vol. 3 (1986) pp. 20182026.Google Scholar
Youcef-Toumi, K. and Asada, H., The design of open-loop manipulator arms with decoupled and configuration-invariant inertia tensors (1987).CrossRefGoogle Scholar
Gompertz, R. S. and Yang, D. C., “Performance evaluation of dynamically linearized and kinematically redundant planar manipulators,” Robot Comput-Integr. Manuf. 5(4), 321331 (1989).CrossRefGoogle Scholar
Coelho, T. A., Yong, L. and Alves, V. F., “Decoupling of dynamic equations by means of adaptive balancing of 2-dof open-loop mechanisms,” Mech. Mach. Theory 39(8), 871881 (2004).CrossRefGoogle Scholar
Arakelian, V. and Sargsyan, S., “On the design of serial manipulators with decoupled dynamics,” Mechatronics 22(6), 904909 (2012).CrossRefGoogle Scholar
Arakelian, V., Xu, J. and Baron, J.-P. L., “Mechatronic design of adjustable serial manipulators with decoupled dynamics taking into account the changing payload,” J. Eng. Design 27(11), 768784 (2016).CrossRefGoogle Scholar
Xu, J., Arakelian, V. and Baron, J.-P. L., “The design of planar serial manipulators with decoupled dynamics taking into account the changing payload,” J. Robot. Mech. Eng. Resr. 1(4), 3845.Google Scholar
Vishal, P. S. and Mohan, M. S., “Simulation and Analysis of Articulated Robot,” In: 2021 International Conference on Advancements in Electrical, Electronics, Communication, Computing and Automation (ICAECA), vol. 3, (2021) pp. 1–5. doi: 10.1109/ICAECA52838.2021.9675778.CrossRefGoogle Scholar
Jiao, Y., Jermsittiparsert, K., Krasnopevtsev, A. Y., Yousif, Q. A. and Salmani, M., “Interaction of thermal cycling and electric current on reliability of solder joints in different solder balls,” Mater. Res. Express 6(10), 106302 (2019).CrossRefGoogle Scholar
Haessig, D. A. Jr. and Friedland, B., On the modeling and simulation of friction (1991).CrossRefGoogle Scholar
Muvengei, O., Kihiu, J. and Ikua, B., “Dynamic analysis of planar multi-body systems with lugre friction at differently located revolute clearance joints,” Multibody Syst. Dyn. 28(4), 369393 (2012).CrossRefGoogle Scholar
Bittencourt, A. C. and Gunnarsson, S., “Static friction in a robot joint-modeling and identification of load and temperature effects,” J. Dynam. Syst. Meas. Control 134(5), 413 (2012).CrossRefGoogle Scholar
Slotine, J.-J. E. and Li, W. et al. , Applied Nonlinear Control, vol. 199 (Prentice hall Englewood Cliffs, NJ, 1991).Google Scholar
Orlov, Y., Aoustin, Y. and Chevallereau, C., “Finite time stabilization of a perturbed double integrator-part I: Continuous sliding mode-based output feedback synthesis,” IEEE Trans. Automat. Contr. 56(3), 614618 (2011).CrossRefGoogle Scholar