Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-12T20:49:55.809Z Has data issue: false hasContentIssue false

Jigless assembly of an industrial product by a universal robotic hand mounted on an industrial robot

Published online by Cambridge University Press:  25 April 2023

Takahito Fukuda
Affiliation:
Department of Mechanical Engineering, Graduate School of Engineering, Kobe University, Kobe, Japan
Hiroki Dobashi*
Affiliation:
Faculty of Systems Engineering, Wakayama University, Wakayama, Japan
Hikaru Nagano
Affiliation:
Department of Mechanical Engineering, Graduate School of Engineering, Kobe University, Kobe, Japan
Yuichi Tazaki
Affiliation:
Department of Mechanical Engineering, Graduate School of Engineering, Kobe University, Kobe, Japan
Raita Katayama
Affiliation:
Department of Mechanical Engineering, Graduate School of Engineering, Kobe University, Kobe, Japan
Yasuyoshi Yokokohji
Affiliation:
Department of Mechanical Engineering, Graduate School of Engineering, Kobe University, Kobe, Japan
*
Corresponding author: Hiroki Dobashi; Email: [email protected]

Abstract

This paper demonstrates that “completely-jigless” assembly of a model product that requires fitting accuracy at the level of industrial products is possible by using a universal hand with four parallel stick fingers mounted on a conventional position-control-based industrial robot. Assuming that each part is taken out of the parts bin and temporarily placed on the work table, the accuracy required for precise fitting cannot be achieved with a vision sensor alone. Introducing an appropriate grasping strategy, the initial position error of the part is absorbed by self-alignment in the process of grasping. Once the alignment is completed, the pose of the grasped part is fixed and jigless assembly is possible with a conventional industrial robot, which has high repeatability. In this paper, we use a gear unit as an example of an industrial product and present some grasping strategies with the universal hand. We also propose some subsequent assembly strategies for shafts and gears. Using those grasping and assembly strategies, it is shown that jigless assembly of the gear unit was successfully completed in the experiment. Although the target product in this paper is specific, the assembly elements in this product, such as shaft screwing, bearing insertion, and gear meshing, are also included in many other products. Therefore, the methods shown in this paper can be applied to other products.

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Devol, G. C. Jr, Programmed article transfer, (1961). United States Patent 2988237.Google Scholar
United States Patent New Energy and Industrial Technology Development Organization, White paper on robotization of industry, business and our life, (2014). (in Japanese).Google Scholar
Perzylo, A., Rickert, M., Kahl, B., Somani, N., Lehmann, C., Kuss, A., Profanter, S., Beck, A., Haage, M., Hansen, M., Roa, M. A., Sornmo, O., Robertz, S., Thomas, U., Veiga, G., Topp, E. A., Kessler, I., Danzer, M., “SMErobotics: Smart robots for flexible manufacturing,” IEEE Robot. Autom. Mag. 26(1), 7890 (2019).CrossRefGoogle Scholar
Arai, T., Aiyama, Y., Maeda, Y., Sugi, M. and Ota, J., “Agile assembly system by “plug and produce”,” CIRP Ann. 49(1), 14 (2000).CrossRefGoogle Scholar
Michniewicz, J. and Reinhart, G., “Cyber-physical robotics -automated analysis, programming and configuration of robot cells based on cyber-physical-systems,” Procedia Technol. 15, 566575 (2014).CrossRefGoogle Scholar
Andersen, R. H., Dalgaard, L., Beck, A. B. and Hallam, J., An Architecture for Efficient Reuse in Flexible Production Scenarios, In: 11th Annual IEEE International Conference on Automation Science and Engineering (CASE), Gothenburg, Sweden (2015) pp. 151157.Google Scholar
Bi, Z., Lang, S., Verner, M. and Orban, P., “Development of reconfigurable machines,” Int. J. Adv. Manuf. Technol. 39(11), 12271251 (2007).CrossRefGoogle Scholar
Perzylo, A., Somani, N., Profanter, S., Kessler, I., Rickert, M. and Knoll, A., Intuitive Instruction of Industrial Robots: Semantic Process Descriptions for Small Lot Production, In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon, Korea (2016) pp. 22932300.Google Scholar
Gaspar, T., Ridge, B., Bevec, R., Bem, M., Kovač, I., Ude, A. and Gosar, Ž., Rapid Hardware and Software Reconfiguration in a Robotic Workcell, In: IEEE 18th International Conference on Advanced Robotics (ICAR), Hong Kong, China (2017) pp. 229236.Google Scholar
Thomas, U., Hirzinger, G., Rumpe, B., Schulze, C. and Wortmann, A., A New Skill Based Robot Programming Language Using UML/P Statecharts, In: IEEE International Conference on Robotics and Automation (ICRA), Karlsruhe, Germany (2013) pp. 461466.Google Scholar
Duan, F., Tan, J. T. C., Tong, J. G., Kato, R. and Arai, T., “Application of the assembly skill transfer system in an actual cellular manufacturing system,” IEEE Trans. Autom. Sci. Eng. 9(1), 3141 (2012).CrossRefGoogle Scholar
Yokokohji, Y., Kawai, Y., Shibata, M., Aiyama, Y., Kotosaka, S., Uemura, W., Noda, A., Dobashi, H., Sakaguchi, T., Yokoi, K., “Assembly challenge: A robot competition of the Industrial Robotics Category, World Robot Summit - summary of the pre-competition in 2018,” Adv. Robot. 33(17), 876899 (2019).10.1080/01691864.2019.1663609CrossRefGoogle Scholar
von Drigalski, F., Schlette, C., Rudorfer, M., Correll, N., Triyonoputro, J. C., Wan, W., Tsuji, T. and Watanabe, T., “Robots assembling machines: Learning from the World Robot Summit 2018 Assembly Challenge,” Adv. Robot. 34(7-8), 408421 (2020).Google Scholar
Kramberger, A., Wolniakowski, A., Rasmussen, M. H., Munih, M., Ude, A. and Schlette, C., Automatic Fingertip Exchange System for Robotic Grasping in Flexible Production Processes, In: IEEE 15th International Conference on Automation Science and Engineering (CASE), Vancouver, BC, Canada (2019) pp. 16641669.Google Scholar
Schlette, C., Buch, A. G., Hagelskjær, F., Iturrate, I., Kraft, D., Kramberger, A., Lindvig, A. P., Mathiesen, S., Petersen, H. G., Rasmussen, M. H., Savarimuthu, T. R., Sloth, C., Sørensen, L. C., Thulesen, T. N., “Towards robot cell matrices for agile production - SDU Robotics’ assembly cell at the WRC 2018,” Adv. Robot. 34(7-8), 422438 (2020).Google Scholar
von Drigalski, F., Nakashima, C., Shibata, Y., Konishi, Y., Triyonoputro, J. C., Nie, K., Petit, D., Ueshiba, T., Takase, R., Domae, Y., Yoshioka, T., Ijiri, Y., Ramirez-Alpizar, I. G., Wan, W., Harada, K., “Team O2AS at the world robot summit 2018: An approach to robotic kitting and assembly tasks using general purpose grippers and tools,” Adv. Robot. 34(7-8), 514530 (2020).Google Scholar
Wyk, K. V., Culleton, M., Falco, J. and Kelly, K., “Comparative Peg-in-Hole testing of a force-based manipulation controlled robotic hand,” IEEE Trans. Robot. 34(2), 542549 (2018).Google Scholar
Pingle, K., Paul, R. and Bolles, R., “Programmable assembly, three short examples,” Film, Stanford Artificial Intelligence Laboratory, 1974, https://archive.org/details/sailfilm_assembly Google Scholar
Mason, M. T., “Mechanics and planning of manipulator pushing operations,” Int. J. Robot. Res. 5(3), 5371 (1986).CrossRefGoogle Scholar
Akella, S. and Mason, M. T., “Posing polygonal objects in the plane by pushing,” Int. J. Robot. Res. 17(1), 7088 (1998).CrossRefGoogle Scholar
Brost, R. C., “Automatic grasp planning in the presence of uncertainty,” Int. J. Robot. Res. 7(1), 317 (1988).10.1177/027836498800700101CrossRefGoogle Scholar
Goldberg, K. Y., “Orienting polygonal parts without sensors,” Algorithmica 10(2-4), 201225 (1993).CrossRefGoogle Scholar
Zhang, M. T. and Goldberg, K., “Designing robot grippers: Optimal edge contacts for part alignment,” Robotica 25(3), 341349 (2007).CrossRefGoogle Scholar
Zhang, M. T. and Goldberg, K., “Gripper point contacts for part alignment,” IEEE Trans. Robot. Autom. 18(6), 902910 (2003).CrossRefGoogle Scholar
Hirata, Y., Kaisumi, A., Yamaguchi, K. and Kosuge, K., Design of Handling Device for Caging and Aligning Circular Objects, In: IEEE International Conference on Robotics and Automation (ICRA), Shanghai, China (2011) pp. 43714377.Google Scholar
Harada, K., Nagata, K., Rojas, J., Ramirez-Alpizar, I. G., Wan, W., Onda, H. and Tsuji, T., “Proposal of a shape adaptive gripper for robotic assembly tasks,” Adv. Robot. 30(17-18), 11861198 (2016).CrossRefGoogle Scholar
Nie, K., Wan, W. and Harada, K., An Adaptive Robotic Gripper with L-Shape Fingers for Peg-in-Hole Tasks, In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain (2018) pp. 40224028.Google Scholar
Nie, K., Wan, W. and Harada, K., “A hand combining two simple grippers to pick up and arrange objects for assembly,” IEEE Robot. Autom. Lett. 4(2), 958965 (2019).CrossRefGoogle Scholar
Bruyninckx, H., Dutre, S. and De Schutter, J., Peg-on-Hole: A Model Based Solution to Peg and Hole Alignment, In: IEEE International Conference on Robotics and Automation (ICRA), 2, Nagoya, Japan (1995) pp. 19191924.Google Scholar
Takahashi, J., Fukukawa, T. and Fukuda, T., “Passive alignment principle for robotic assembly between a ring and a shaft with extremely narrow clearance,” IEEE/ASME Trans. Mechatron. 21(1), 196204 (2016).Google Scholar
Dobashi, H., Hiraoka, J., Fukao, T., Yokokohji, Y., Noda, A., Nagano, H., Nagatani, T., Okuda, H. and Tanaka, K.-I., “Robust grasping strategy for assembling parts in various shapes,” Adv. Robot. 28(15), 10051019 (2014).CrossRefGoogle Scholar
Soma cube, Wikipedia. https://en.wikipedia.org/wiki/Soma_cube (accessed March 28, 2023).Google Scholar
Reuleaux, F., The Kinematics of Machinery (Macmillan, New York, 1876)).Google Scholar
Makita, S. and Wan, W., “A survey of robotic caging and its applications,” Adv. Robot. 31(19-20), 10711085 (2017).CrossRefGoogle Scholar
Nishimura, T., Tennomi, M., Suzuki, Y., Tsuji, T. and Watanabe, T., “Lightweight, high-force gripper inspired by chuck clamping devices,” IEEE Robot. Autom. Lett. 3(3), 13541361 (2018).CrossRefGoogle Scholar
Assembly Challenge, the World Robot Summit 2020. https://worldrobotsummit.org/en/wrs2020/challenge/industrial/assembly.html (accessed March 28, 2023).Google Scholar