Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-25T04:49:29.916Z Has data issue: false hasContentIssue false

A generalized scheme for the global adaptive regulation of robot manipulators with bounded inputs

Published online by Cambridge University Press:  14 May 2013

D. J. López-Araujo
Affiliation:
Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José 2055, Lomas 4a. Sección 78216, San Luis Potosí, S.L.P., Mexico
A. Zavala-Río*
Affiliation:
Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José 2055, Lomas 4a. Sección 78216, San Luis Potosí, S.L.P., Mexico
V. Santibáñez
Affiliation:
Instituto Tecnológico de la Laguna, Apdo. Postal 49, Adm. 1, 27001 Torreón, Coah., Mexico
F. Reyes
Affiliation:
Benemérita Universidad Autónoma de Puebla, Blvd. Puebla 108, Bosques de San Sebastián 72310, Puebla, Pue., Mexico
*
*Corresponding author. E-mail: [email protected]

Summary

In this work, a generalized adaptive control scheme for the global position stabilization of robot manipulators with bounded inputs is proposed. It gives rise to various families of bounded controllers with adaptive gravity compensation. Compared with the adaptive approaches previously developed in a bounded-input context, the proposed scheme guarantees the adaptive regulation objective: globally, avoiding discontinuities in the control expression as well as in the adaptation auxiliary dynamics, preventing the inputs to reach their natural saturation bounds, and imposing no saturation-avoidance restriction on the control gains. Experimental results corroborate the efficiency of the proposed adaptive scheme.

Type
Articles
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Krikelis, N. J. and Barkas, S. K., “Design of tracking systems subject to actuator saturation and integrator wind-up,” Int. J. Control 39 (4), 667682 (1984).CrossRefGoogle Scholar
2.Chen, B. S. and Wang, S. S., “The stability of feedback control with nonlinear saturating actuator: Time domain approach,” IEEE Trans. Autom. Control 33 (5), 483487 (1988).CrossRefGoogle Scholar
3.Kapasouris, P. and Athans, M., “Control Systems with Rate and Magnitude Saturation for Neutrally Stable Open Loop Systems,” Proceedings of the 29th IEEE Conference on Decision and Control, Honolulu, HI (1990) pp. 34043409.CrossRefGoogle Scholar
4.Kosut, R. L., “Design of linear systems with saturating linear control and bounded states,” IEEE Trans. Autom. Control 28 (1), 121124 (1983).CrossRefGoogle Scholar
5.Bernstein, D. S. and Michel, A. N., “A chronological bibliography on saturating actuators,” Int. J. Robust Nonlinear Control 5, 375380 (1995).CrossRefGoogle Scholar
6.Kelly, R., Santibáñez, V. and Loría, A., Control of Robot Manipulators in Joint Space (Springer, London, 2005).Google Scholar
7.Kelly, R., Santibáñez, V. and Berghuis, H., “Point-to-point robot control under actuator constraints,” Control Eng. Pract. 5 (11), 15551562 (1997).CrossRefGoogle Scholar
8.Santibáñez, V., Kelly, R. and Reyes, F., “A new set-point controller with bounded torques for robot manipulators,” IEEE Trans. Ind. Electron. 45 (1), 126133 (1998).CrossRefGoogle Scholar
9.Zavala-Río, A. and Santibáñez, V., “Simple extensions of the PD-with-gravity-compensation control law for robot manipulators with bounded inputs,” IEEE Trans. Control Syst. Technol. 14 (5), 958965 (2006).CrossRefGoogle Scholar
10.Santibáñez, V. and Kelly, R., “On global regulation of robot manipulators: Saturated linear state feedback and saturated linear output feedback,” Eur. J. Control 3 (2), 104113 (1997).CrossRefGoogle Scholar
11.Loría, A., Kelly, R., Ortega, R. and Santibáñez, V., “On global output feedback regulation of Euler-Lagrange systems with bounded inputs,” IEEE Trans. Autom. Control 42 (8), 11381143 (1997).CrossRefGoogle Scholar
12.Burkov, I. V., “Stabilization of Mechanical Systems via Bounded Control and Without Velocity Measurements,” Proceedings of the 2nd Russian-Swedish Control Conference, St. Petersburg, Russia (1995) pp. 3741.Google Scholar
13.Santibáñez, V. and Kelly, R., “Global Regulation for Robot Manipulators Under SP-SD Feedback,” Proceedings of the 1996 IEEE International Conference on Robotics and Automation, Minneapolis, MN (1996) pp. 927932.Google Scholar
14.Zavala-Río, A. and Santibáñez, V., “A natural saturating extension of the PD-with-desired-gravity-compensation control law for robot manipulators with bounded inputs,” IEEE Trans. Robot. 23 (2), 386391 (2007).CrossRefGoogle Scholar
15.Ortega, R., Loría, A., Kelly, R. and Praly, L., “On Passivity-Based Output Feedback Global Stabilization of Euler-Lagrange Systems,” Proceedings of the 33th IEEE Conference on Decision and Control, Lake Buena Vista, FL (1994) pp. 381386.Google Scholar
16.Burkov, I. V. and Freidovich, L. B., “Stabilization of the position of a Lagrangian system with elastic elements and bounded control with and without measurement of velocities,” J. Appl. Maths. Mechs. 61 (3), 433441 (1997).CrossRefGoogle Scholar
17.Colbaugh, R., Barany, E. and Glass, K., “Global Regulation of Uncertain Manipulators Using Bounded Controls,” Proceedings of the 1997 IEEE International Conference on Robotics and Automation, Albuquerque, NM (1997) pp. 11481155.Google Scholar
18.Zergeroglu, E., Dixon, W., Behal, A. and Dawson, D., “Adaptive set-point control of robotic manipulators with amplitud-limited control inputs,” Robotica 18 (2), 171181 (2000).CrossRefGoogle Scholar
19.Laib, A., “Adaptive output regulation of robot manipulators under actuator constraints,” IEEE Trans. Robot. Autom. 16 (1), 2935 (2000).CrossRefGoogle Scholar
20.Dixon, W. E., “Adaptive regulation of amplitude limited robot manipulators with uncertain kinematics and dynamics,” IEEE Trans. Autom. Control 52 (3), 448493 (2007).CrossRefGoogle Scholar
21.Dixon, W. E., de Queiroz, M. S., Zhang, F. and Dawson, D. M., “Tracking control of robot manipulators with bounded torque inputs,” Robotica 17 (2), 121129 (1999).CrossRefGoogle Scholar
22.Xiao, J. Z., Wang, H. R., Zhang, W. and Wei, H. R., “Adaptive Robotic Control Based on a Filter Function Under the Saturation of Actuators,” Proceedings of the 5th International Conference on Machine Learning and Cybernetics, Dalian, China (2006) pp. 283287.Google Scholar
23.Liuzzo, S. and Tomei, P., “A global adaptive learning control for robotic manipulators,” Automatica 44 (5), 13791384 (2008).CrossRefGoogle Scholar
24.Liuzzo, S. and Tomei, P., “Global adaptive learning control of robotic manipulators by output error feedback,” Int. J. Adapt. Control Signal Process. 23 (1), 97109 (2009).CrossRefGoogle Scholar
25.Hong, Y. and Yao, B., “A globally stable high-performance adaptive robust control algorithm with input saturation for precision motion control of linear motor drive systems,” IEEE/ASME Trans. Mechatronics 12 (2), 198207 (2007).CrossRefGoogle Scholar
26.Hu, C., Yao, B., Chen, Z. and Wang, Q., “Adaptive robust repetitive control of an industrial biaxial precision gantry for contouring tasks,” IEEE Trans. Control Syst. Technol. 19 (6), 15591568 (2011).CrossRefGoogle Scholar
27.Yarza, A., Santibáñez, V. and Moreno-Valenzuela, J., “Global asymptotic stability of the classical PID controller by considering saturation effects in industrial robots,” Int. J. Adv. Robot. Syst. 8 (4), 3442 (2011).CrossRefGoogle Scholar
28.Santibáñez, V., Kelly, R., Zavala-Río, A. and Parada, P., “A New Saturated Nonlinear PID Global Regulator for Robot Manipulators,” Proceedings of the 17th IFAC World Congress, Seoul, Korea (2008) pp. 1169011695.Google Scholar
29.Su, Y. and Müller, P. C. and Zheng, C., “Global asymptotic saturated PID control for robot manipulators,” IEEE Trans. Control Syst. Technol. 18 (6), 12801288 (2010).Google Scholar
30.Meza, J. L., Santibáñez, V. and Hernández, V. M., “Saturated Nonlinear PID Global Regulator for Robot Manipulators: Passivity-Based Analysis,” Proceedings of the 16th IFAC World Congress, Prague, Czech Republic (2005).Google Scholar
31.Khalil, H. K., Nonlinear Systems (Prentice-Hall, Upper Saddle River, NJ, 2002).Google Scholar
32.Rouche, N., Habets, P. and Laloy, M., Stability Theory by Lyapunov's Direct Method (Springer-Verlag, New York, 1977).CrossRefGoogle Scholar
33.Arimoto, S., Control Theory of Non-Linear Mechanical Sys-break tems: A Passivity-Based and Circuit-Theoretic Approach (Oxford University Press, Oxford, UK, 1996).CrossRefGoogle Scholar
34.Sciavicco, L. and Siciliano, B., Modelling and Control of Robot Manipulators (Springer, London, 2000).CrossRefGoogle Scholar
35.Lewis, F. L., Dawson, D. M. and Abdallah, C. T., Robot Manipulator Control: Theory and Practice (Marcel Dekker, New York, 2004).Google Scholar
36.Teel, A. R., “Global stabilization and restricted tracking for multiple integrators with bounded controls,” Syst. Control Lett. 18 (1), 165171 (1992).CrossRefGoogle Scholar
37.Michel, A. N., Hou, L. and Liu, D., Stability of Dynamical Systems (Birkhäuser, Boston, 2008).Google Scholar
38.Armstrong-Hélouvry, B., Control of Machines with Friction (Kluwer Academic, Boston, 1991).CrossRefGoogle Scholar
39.Filippov, A. F., Differential Equations with Discontinuous Righthand Sides (Kluwer Academic, Dordrecht, 1988).CrossRefGoogle Scholar
40.Shevitz, D. and Paden, B., “Lyapunov stability theory of nonsmooth systems,” IEEE Trans. Autom. Control 39 (9), 19101914 (1994).CrossRefGoogle Scholar
41.Hahn, W., Stability of Motion (Springer-Verlag, Berlin, 1967).CrossRefGoogle Scholar
42.Sepulchre, R., Janković, M. and Kokotovic, P., Constructive Nonlinear Control (Springer-Verlag, London, 1997).CrossRefGoogle Scholar
43.Reyes, F. and Kelly, R., “Experimental evaluation of identification schemes on a direct-drive robot,” Robotica 15 (5), 563571 (1997).CrossRefGoogle Scholar
44.Reyes, F. and Kelly, R., “Experimental evaluation of model-based controllers on a direct-drive robot arm,” Mechatronics 11 (3), 267282 (2001).CrossRefGoogle Scholar