Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-25T04:19:32.354Z Has data issue: false hasContentIssue false

Fuzzy weighted subtask controller for redundant manipulator

Published online by Cambridge University Press:  28 February 2014

Young jun Yoo
Affiliation:
Department of Electronic and Electrical Engineering, POSTECH, Pohang, Gyeongbuk, Republic of Korea
Dae sung Jung
Affiliation:
Department of Electronic and Electrical Engineering, POSTECH, Pohang, Gyeongbuk, Republic of Korea
Yu jin Jang
Affiliation:
Department of Information and Communication Engineering, Dongguk University, Gyeong Ju, Gyeongsangbuk-Do, Republic of Korea
Sang chul Won*
Affiliation:
Department of Electronic and Electrical Engineering, POSTECH, Pohang, Gyeongbuk, Republic of Korea
*
*Corresponding author. E-mail: [email protected]

Summary

We propose a fuzzy weighted subtask controller for a redundant robot manipulator. To expand the feasibility of the inverse kinematic solution, we introduce a weighted pseudo-inverse that changes the null-space of the Jacobian. The weights of elements in the pseudo-inverse are obtained using fuzzy rules that are related to the null-space velocity tracking error. With the pseudo-inverse, we develop a task space controller to track a desired task space trajectory and subtask control input. We propose a weighted subtask controller for multiple subtasks. The results of a simulation and experiment using a seven-degree-of-freedom whole arm manipulator robot show the effectiveness of the proposed controller with multiple subtasks.

Type
Articles
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Risse, W. and Hiller, M. H., “Dextrous Motion Control of a Redundant SCARA Robot,” Proceedings of the Industrial Electronics Conference (IECON 1998), Aachen, Germany (Aug. 31–Sep. 4, 1998) pp. 24462451.Google Scholar
2.Le Boudec, B., Saad, M. and Nerguizian, V., “Modeling and adaptive control of redundant robots,” Math. Comput. Simul. 71 (4–6), 395403 (2006).Google Scholar
3.Zergeroglu, E., Dawson, D. M., Walker, I. and Behal, A., “Nonlinear tracking control of kinematically redundant robot manipulators,” IEEE/ASME Trans. Mechatronics 9 (1), 129132 (2004).CrossRefGoogle Scholar
4.Ozbay, U., Sahin, H. T. and Zergeroglu, E., “Robust tracking control of kinematically redundant robot manipulators subject to multiple self-motion criteria,” Robotica 26 (6), 711728 (2008).Google Scholar
5.Cleary, K. R. and Tesar, D., “Incorporating Multiple Criteria in the Operation of Redundant Manipulators of Robotics and Automation,” Proceedings of the IEEE International Conference, Cincinnati, Ohio (May. 13–18, 1999), pp. 618624.Google Scholar
6.Siciliano, B., “Kinematic control of redundant robot manipulators: A tutorial,” J. Intell. Robot. Syst. 3 (3), 201212 (1990).CrossRefGoogle Scholar
7.Liegeois, A., “Automatic supervisory control of the configuration and behavior of multibody mechanisms,” IEEE Trans. Syst. Man Cybern. SMC–7 (12), 868871, (1977).Google Scholar
8.Nakamura, Y., Hanafusa, H. and Yoshikawa, T., “Task-priority based redundancy control of robot manipulators,” Int. J. Robot. Res. 6 (2), 315 (1987).Google Scholar
9.Chiaverini, S., “Singularity-robust task-priority redundancy resolution for real-time kinematic control of robot manipulators,” IEEE Trans. Robot. Autom. 13 (3), 398410 (1997).Google Scholar
10.Chiacchio, P., Chiaverini, S. and Sciavicco, L., “Closed-loop inverse kinematics schemes for constrained redundant manipulators with task space augmentation and task priority strategy,” Int. J. Robot. Res. 10 (4), 410425 (1991).Google Scholar
11.Antonelli, G., “Stability analysis for prioritized closed-loop inverse kinematic algorithms for redundant robotic systems,” IEEE Trans. Robot. 25 (5), 985994 (2009).Google Scholar
12.Baillieul, J., “Kinematic Programming Alternatives for Redundant Manipulators,” Proceedings of the IEEE International Conference of Robotics and Automation, St. Louis, Missouri (Mar. 25–28, 1985) pp. 722728.Google Scholar
13.Egeland, O., “Task-space tracking with redundant manipulators,” IEEE J. Robot. Autom. RA–3 (5), 471475 (1987).Google Scholar
14.Sciavicco, L. and Siciliano, B., “A solution algorithm to the inverse kinematic problem for redundant manipulators,” IEEE J. Robot. Autom. 4 (4), 403410 (1988).Google Scholar
15.Chan, T. F. and Dubey, R. V., “A weighted least-norm solution based scheme for avoiding joint limits for redundant joint manipulators,” IEEE Trans. Robot. Autom. 11 (2), 286292 (1995).Google Scholar
16.Shen, W. and Gu, J., “Multi-criteria Kinematics Control for the pa10-7c Robot Arm with Robust Singularities,” Proceedings of the IEEE International Conference of Robotics and Biomimetics, Yalong Bay, Sanya, China (Dec. 15–18, 2007) pp. 12421248.Google Scholar
17.Xiang, J., Zhong, C. and Wei, W., “General-weighted least-norm control for redundant manipulators,” IEEE Trans. Robot. 26 (4), 660669 (2010).Google Scholar
18.Maciejewski, A. A. and Klein, C. A., “Obstacle avoidance for kinematically redundant manipulators in dynamically varying environments,” Int. J. Robot. Res. 4, 109117 (1985).Google Scholar
19.Tatlicioglu, E., McIntyre, M., Dawson, D. and Walker, I., “Adaptive Nonlinear Tracking Control of Kinematically Redundant Robot Manipulators with Sub-Task Extensions,” Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference, CDC-ECC '05 Seville, Spain (Dec. 12–15, 2005) pp. 43734378.Google Scholar
20.Tatlicioglu, E., McIntyre, M. and Dawson, D., “Adaptive nonlinear tracking control of kinematically redundant robot manipulators with sub-task extensions,” Clemson University CRB Technical Report (2005).CrossRefGoogle Scholar
21.Tatlicioglu, E., Braganza, D., Burg, T. C. and Dawson, D. M., “Adaptive control of redundant robot manipulators with sub-task objectives,” Robotica 27 (6), 873881 (2009).Google Scholar
22.Nath, N., Tatlicioglu, E. and Dawson, D. M., “Teleoperation with kinematically redundant robot manipulators with sub-task objectives,” Robotica 27 (7), 10271038 (2009).Google Scholar
23.Nath, N., Tatlicioglu, E. and Dawson, D. M., “Teleoperation with Kinematically Redundant Robot Manipulators with Sub-Task Objectives,” Proceedings of the IEEE Conference on Decision and Control, Cancun, Maxico (Dec. 9–11, 2008) pp. 43204325.Google Scholar
24.Yoo, Y. J., Jung, D. S. and Won, S. C.Multi-subtask Controllers of the Redundant Robot Manipulator,” Proceedings of the 37th Annual Conference on IEEE Industrial Electronics Society (IECON 2011), Melbourne, Australia (Nov. 7–10, 2011) pp. 227232.Google Scholar
25.Choi, B. W., Won, J. H. and Chung, M. J., “Optimal redundancy resolution of a kinematically redundant manipulator for a cyclic task,” J. Robot. Syst. 9 (4), 481503 (1992).Google Scholar
26.Suh, K. C. and Hollerbach, J. M., “Local Versus Global Torque Optimization of Redundant Manipulators,” IEEE International Conference on Robotics and Automation, Raleigh, North Caroliina (Mar. 31–Apr. 3, 1987) pp. 614624.Google Scholar
27.Martin, D. P., Baillieul, J. and Hollerbach, J. M., “Resolution of kinematic redundancy using optimization techniques,” IEEE Trans. Robot. Autom. 5 (4), 529533 (1989).Google Scholar
28.Jang, Y. J. and Kim, S. W., “An estimation of a billet temperature during reheating furnace operation,” Int. J. Control Autom. Syst. 5 (1), 4350 (2007).Google Scholar
29.Kim, J. W., Kim, T. G., Park, Y. S. and Kim, S. W., “On-load motor parameter identification using univariate dynamic encoding algorithm for searches,” IEEE Tran. Energy Convers. 23 (3), 804813 (2008).Google Scholar
30.Kim, J. W., Kim, T. G., Choi, J. Y. and Kim, S. W., “On the global convergence of univariate dynamic encoding algorithm for searches (uDEAS),” Int. J. Control Autom. Syst. 6 (4), 571582 (2008).Google Scholar